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Abstract: The handling of 3D orientations is a common element in many problems that arise in
the estimation and control of dynamic systems. Over-parametrizations such as unit quaternions
are commonly used to avoid singularities but come with the property of an invariant which
needs to be preserved. By using numerical optimization methods, these invariants are subject to
numeric errors and require stabilization. In this work, we adopt methods known from optimal
control for the problem of state estimation. We present an optimization-based attitude estimator
using the measurements of an inertial measurement unit and evaluate the performance of a first-
order stabilization of the invariant by modifying the dynamics. The uncertainties of the estimator
are analyzed for different configurations of the proposed stabilization. Finally, we show how the
stabilization affects the estimation of parameters and justify the use of an additional equality
constraint for the invariant to yield more robust and consistent results.
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1. INTRODUCTION

In the age of the internet of moving things, the ability
to track motion becomes a feature of major importance.
Driven by recent developments in sensor technology, a ris-
ing number of applications in robotics, augmented and vir-
tual reality is equipped with motion sensors such as inertial
measurement units (imus). The acquired measurement
data from multiple sensors is fused to estimate the motion
state of the dynamic system using estimation algorithms.
The most famous approach addressing the problem of state
estimation in real-time is the Kalman (1960) filter, as well
as its extensions for nonlinear systems, extended Kalman
filter (ekf) and unscented Kalman filter (ukf) (Julier
and Uhlmann, 1997). An increase in system complexity
and the coherently increasing demands on performance
and robustness of systems such as unmanned aerial ve-
hicles (uavs), push traditional methods for control and
estimation towards their limits. Supported by recent ad-
vances in embedded computing technology and efficient
numerical algorithms, optimization-based methods aim to
manage the balancing act between performance and real-
time requirements.

The motion state may consider typical quantities such as
position, velocity, and more importantly the attitude or
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orientation of the object of interest w.r.t. a fixed reference
frame. The latter is represented in the SO(3) rotation
group which describes all rotations about the origin in the
3-dimensional Euclidean space. Due to its straightforward
interpretation, Euler angles are probably the most com-
monly used representation of the attitude. However, Euler
angles suffer from a difficulty which is often referred to as
gimbal lock and results in the loss of a degree of freedom
in specific configurations. Another disadvantage of Euler
angles is that they result in a strongly nonlinear system of
equations when expressing the dynamics of a system.
Higher order representations (see Shuster (1993) for an
overview) are used in practice to avoid this pitfall but
need to be restricted in their degrees of freedom. Unit
quaternions are one valid representation with significant
practical relevance. Quaternions are an extension of com-
plex numbers to four dimensions, where the quaternion is
defined by

q = [q0, q1, q2, q3]ᵀ = [q, q̆ᵀ]ᵀ (1)

consisting of a scalar q ∈ R and vector part q̆ ∈ R3.
For the valid representation of rotations in SO(3) the
quaternion needs to be restricted to a valid manifold by
defining q ∈ Q := {q ∈ R4 | ‖q‖2 = 1} to be of unit
norm. The property needs to be preserved to ensure a valid
interpretation of the attitude leaving 3 degrees of freedom.
Using numerical methods with limited precision introduces
errors which can cause a violation of this condition over
time and result in undefined behavior.



In this paper, we use a first order stabilization of the
quaternion invariant by modifying the system dynamics.
After establishing the necessary notation and operators
in Section 2, we explain the problems arising from the
violation of the unit norm constraint and present possible
methods to stabilize the numerics in Section 3. The meth-
ods are applied to a simple attitude estimation problem
using measurement data of a magnetic, angular rate &
gravity (marg) sensor in Section 4. The results of the
moving horizon estimation (mhe)-based estimator are
compared in Section 5.

2. QUATERNION NOTATION

The concatenation of orientations is defined by the quater-
nion multiplication, for which we adopt the � operator

q � p = [q0p0 − q̆ᵀp̆, (q0p̆+ q̆ × p̆)ᵀ]ᵀ, (2)

for q,p ∈ Q.

For arbitrary coordinate systems A and B with relative
orientation qAB , the vector Br ∈ R3 in coordinate frame
B can be expressed in the coordinate frame A using[

0

Ar

]
= qAB �

[
0

Br

]
� q−1

AB (3)

Ar= (2q2AB − 1)Br + 2qAB Brq̆
×
AB + 2q̆AB(q̆ᵀAB Br),

where q̆×AB denotes the skew-symmetric matrix

q̆×AB =

[
0 −q1 q2
q3 0 −q3
−q2 q1 0

]
(4)

of the vector part q̆AB of the orientation quaternion qAB .
Using this result, we define a function

R(qAB) = (2q2AB − 1)I3 + 2qAB q̆
×
AB + 2q̆AB q̆

ᵀ
AB , (5)

to obtain an orthonormal rotation matrix R ∈ R3×3

which is used in the following equations to simplify the
mathematical notation.

3. STABILIZATION METHODS

Violations of the unit norm of an orientation quaternion
can result rapidly in undefined behavior of a system.
Several methods exist to restrict the quaternions to a valid
manifold in SO(3). In this work, we use modified system
dynamics and impose equality constraints to ensure a valid
manifold. A different approach is to use an exponential
mapping and use its Lie algebra (see Bloesch et al. (2016)
for an introduction).

3.1 Invariant Stabilization using Dynamics

A commonly used method to preserve invariants against
numerical drift is to modify the dynamics by extending
the ordinary differential equation (ode) of the state
variable with a weighted penalization term. For second
order invariants this method is known as Baumgarte
stabilization (Baumgarte, 1972) and for an orientation
state represented as a unit quaternion, the following first
order stabilization

q̇AB =
1

2
qAB � [0,Bω

ᵀ]ᵀ︸ ︷︷ ︸
q̇natural

+
ρ

2
qAB((qᵀABqAB)−1 − 1)︸ ︷︷ ︸

q̇corr

(6)
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Fig. 1. Invariant violation as a function of the stabilization
contraction term ρ after integration of a constant
angular velocity signal ω over Tf = 100 s using a fixed
step size of ∆t = 0.01 s. The solid lines are obtained
using an explicit RK4 integrator whereas the dotted
lines show the results for an implicit RK integrator
using s = 3 Lagrange polynomials l(τ) at Legendre
collocation points.

is explained in detail by Gros et al. (2015) and widely used
in the aerospace community (Martin and Salan, 2010).
The correction term, denoted as q̇corr, was shown to be
orthogonal to the natural ode of a unit quaternion q̇natural.
The additional term q̇corr increases the stiffness of the
equation which can cause numerical problems when using
explicit integration methods. To solve stiff equations, we
use an implicit Runge-Kutta (irk) method of the form

xk+1 = xk + ∆t

s∑
j=1

κj

∫ 1

0

lj(τ)dτ, k = 1, . . . N, (7)

where s ∈ N orthogonal Lagrange polynomials l(τ) are
integrated over τ ∈ R using the corresponding coefficients
κ ∈ R. The integration result is scaled using the step size
∆t to propagate the state xk. The contraction factor in
q̇corr is denoted by ρ ∈ R and needs to be chosen carefully.
Fig. 1 shows the invariant violation of the unit quaternion
qAB after an integration time Tf = 100 s as a function
of ρ for a few different constant angular velocity inputs
using explicit and implicit Runge-Kutta (rk) integrators
with a fixed step size of ∆t = 0.01 s. The plot visualizes
that the explicit methods are more sensitive to the choice
of the contraction parameter ρ than implicit integrators
which reveal a more equally good performance for different
angular velocity signals ω.

3.2 Invariant Stabilization using Equality Constraints

Another approach to preserve the unit norm property of
the quaternion is to impose the condition as a further
equality constraint into the optimization problem. Using
direct methods (Betts, 2010) constraints of the form

(q
[k]
AB)ᵀq

[k]
AB − 1 = 0, k = 1, . . . N (8)

can be imposed at discrete times tk in the estimation
window T = N∆t. One could think, that imposing the unit
norm at each discrete time tk could improve the preser-
vation of the unit norm condition but the use of several
invariant constraints might over-constrain the problem
and could lead to convergence issues and undesired results.



4. MHE ATTITUDE ESTIMATOR USING MARG
SENSOR

In this section, we introduce a standard example for an
attitude estimator using a 9-axis motion sensor including a
3-axis accelerometer, a 3-axis gyroscope, and magnetome-
ter, correctly referred to as marg sensor but often called
imu. The device measures the local magnetic field, angular
rate, linear acceleration and is typically rigidly attached to
a moving object.

4.1 Models

Following the model description similar to Sabatini (2006)
and Skoglund et al. (2017), we design a optimization-based
attitude estimator using mhe. The state vector x(t) ∈ Rnx

is defined by
x = [qᵀLS ,

a
Sδ

ᵀ,mSδ
ᵀ]ᵀ, (9)

where we dropped the evaluation point t for notational
convenience. qLS ∈ Q encodes the relative orientation
between the sensor frame S and the local-fixed frame L as
a unit quaternion. The states a

Sδ,
m
Sδ ∈ R3 correspond to

the bias terms for accelerometer and magnetometer in the
sensor frame S. The vector u ∈ Rnu contains the angular
rate measurements of the gyroscope

u = [SωLS ], (10)

where SωLS ∈ R3. The predicted measurements of ac-
celerometer and magnetometer can be calculated using the
sensor models

a
h(x) = R(qSL) Lg + a

Sδ, (11a)
m
h(x) = R(qSL) Le+ m

Sδ, (11b)

where Lg ∈ R3 and Le ∈ R3 denote the gravity and earth
magnetic field vector in the local frame L. In this example,
these vectors are assumed to be constant. In a magnetic-
distorted environment a calibration procedure (Kok et al.,
2012) is required to achieve similar behavior. Furthermore,
we made use of the following identity

R(qSL) = R(q−1
LS) (12)

for the definition of the sensor models.

The bias terms are assumed to be constant over the estima-
tion window, whereas the propagation of the orientation
is defined by the ode,

q̇LS =
1

2
qLS � [0, Sω

ᵀ
LS ]ᵀ

=
1

2

[
0 − Sω

ᵀ
LS

SωLS Sω
×
LS

]
qLS (13a)

a

S δ̇ = [0, 0, 0]ᵀ, (13b)
m

S δ̇ = [0, 0, 0]ᵀ. (13c)

4.2 Optimization Problem

To solve the attitude estimation problem using nonlinear
optimization methods over a time horizon T , we encode
the estimation problem in a continuous-time objective
function

f(x(·)) =
1

2

∫ t

τ=t−T

[
‖ Sa(t)− a

h(x(τ))‖2aR−1 (14a)

+‖ Sm(t)− m
h(x(τ))‖2mR−1

]
dτ (14b)

+
1

2
‖x(t− T )− x̂(t− T )‖2P−1 . (14c)

The squared residuals of accelerometer Sa ∈ R3 and
magnetometer Sm ∈ R3 measurements and their corre-
sponding sensor models are normalized according to their
standard deviations using weighting matrices aR = I3

aσ2

and mR = I3
mσ2 accordingly. To account for previous

measurements or a priori information a further cost term
is introduced in (14c). This cost term, often referred to as
arrival cost, penalizes deviations of the first state estimate
in the current horizon x(t−T ) from an a priori known and
therefore as constant entering term x̂(t− T ) according to
the weighting matrix P . The objective function does not
include a term for the process noise on the tracked horizon.
Therefore the angular rate does not enter as optimization
variable in the problem.
We use a direct multiple shooting approach (Bock and
Plitt, 1984), which is well understood for optimal control
problems and allows the handling of nonlinearities by
lifting the problem and leads to a discretization of states
(x0, . . . ,xN ) and inputs (u0, . . . ,uN−1) where the estima-
tion horizon T = N∆t is defined by a multiple N ∈ N of
the sampling time ∆t ∈ R. Applying the discretization to
(14) leads to the following equality constrained optimiza-
tion problem:

min
x0,··· ,xN

1

2

N∑
k=0

∥∥∥∥[ Sak
Smk

]
−
[ a
h(xk)

m
h(xk)

]∥∥∥∥2
R−1

k

+
1

2
‖x0 − x̂0‖2P−1 (15a)

s.t. xk+1 = φ(xk,uk), k = 0, . . . , N − 1 (15b)

Zq(xN )ᵀZq(xN ) = 1, (15c)

where R weighting matrix denotes the block-diagonal
concatenation of the measurement noises aR and mR

Rk =

[
aRk 0

0 mRk

]
, k = 0, . . . , N (16)

The shooting constraints are imposed using the irk inte-
grator function φ(xk,uk) which propagates the state using
the odes defined Eq. (13). An additional and optional
constraint (15c) enforces the unit norm property of the
quaternion using a selection matrix Zq for the quaternion
entries in x at the end of the horizon.

4.3 Arrival Cost Computation

The arrival cost incorporates a priori knowledge about the
state to keep the computational cost manageable concern-
ing real-time constraints of a system. Whereas Michalska
and Mayne (1995) proposed to use a constant arrival cost
term others Haseltine and Rawlings (2005); Ferreau et al.
(2012) use a penalization term on the initial guess x̂0

which is weighted according to the inverse of the covariance

matrix denoted as P . To update x̂
[i]
0 and P [i] before shift-

ing the horizon by ∆t to [i+1], we apply the smoothed ekf
arrival cost update which is summarized for quaternion
estimation in the following algorithm:



(1) Get result from the optimizer x
∗[i]
0 and constant

entering parameters x̂
[i]
0 ,P [i],R[i] for each run i after

shifting the tracked horizon of the mhe estimator.
(2) Compute Kalman gain K [i] using the Jacobian of the

measurement model:

H [i] =

[
∇x

a
h(x)

∇x
m
h(x)

]∣∣∣∣
x

∗[i]
0

(17a)

K [i] =P [i]H [i]ᵀ((H [i]P [i]H [i]ᵀ) +R
[i]
0 )−1 (17b)

(3) Calculate new initial guess for arrival cost x̂0,i+1:

x
[i+1]
0 =x

[i]
0 +K [i]

([
Sa

[i]
0

Sm
[i]
0

]
−
[ a
h(x

∗[i]
0 )

m
h(x

∗[i]
0 )

]
−H [i](x̂

[i]
0 − x

∗[i]
0 )

)
(18a)

x̂
[i+1]
0 =φ(x

[i]
0 ,u

[i]
1 ) (18b)

(4) Update arrival cost covariance matrix using the cal-
culated Kalman gain K [i]:

P̃ [i] =(INx
−K [i]H [i])P [i] (19)

(5) Calculate the process noise matrix Q
[i]
0 using the bias

instability of accelerometer δaΣ ∈ R3×3, magnetome-

ter δmΣ ∈ R3×3 and the measurement noise of the
gyroscope which is expressed as a quaternion using

qΣ(q) =
∆t

2

[
q̆× + q0I3

q̆ᵀ

]
ωΣ

[
q̆× + q0I3

q̆ᵀ

]ᵀ
(20a)

Q[i] =


q
Σ(q

[i]
LS,0) 0 0

0 δaΣ 0

0 0 δmΣ

 (20b)

(6) Propagate covariance matrix using the Jacobian of
the dynamics:

Φ[i] = ∇xφ(x,u)|
x

∗[i]
0

(21a)

P [i+1] =Φ[i]P̃ [i]Φ[i]ᵀ +Q[i] (21b)

We want to stress that the measurement noise of the
gyroscope enters over the process noise matrix Q only in
the computation of the arrival cost and is not considered
in the optimization problem. This represents a strong
assumption which does not allow the use of very large
horizons.

4.4 State Uncertainty Computation

In the previous section, we described the smoothed ekf
update for the covariance matrix P which is used for the
weighted quadratic arrival cost term containing the prior
knowledge of the past. To calculate the state uncertainty
of the estimator at the current time tN,i, we invert the
Karush-Kuhn-Tucker (kkt) system of the current opti-
mization problem. The kkt system is defined as the block-
concatenation of the Hessian of the Lagrangian L(x, λ)
and the gradient of the equality constraints g(x) yielding
the matrix [

∇2
xL(x, λ) ∇xg(x)
∇xg(x)ᵀ 0

]
. (22)

For a real-time critical implementation of such an estima-
tor a fast Schur complement method (see Bürger et al.
(2017)) might be the preferred solution to compute the
covariance of the state rather than inverting the whole
kkt matrix.
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Fig. 2. Simulated angular velocity signal Sω =
[ωx, ωy, ωz]

ᵀ using high frequent sine and cosine sig-
nals with changing amplitude for ωx and ωy and a
low frequent increasing sine signal for the ωz-channel.
The continuous signals are sampled with a frequency
of 100 Hz over a total simulation time of 10 s.

5. NUMERICAL EXAMPLE

5.1 Simulation

To analyze the proposed methods in Section 3 and their
influence on the estimation result, we simulate a con-
trol input signal and assume the initial orientation to
be qLS = [1, 0, 0, 0]ᵀ. A series of in amplitude changing
sine and cosine signals is used to excite the system. The
resulting angular velocity signal is shown in Fig. 2. To
obtain more general results, we use several independent
runs with additional Gaussian noise with 0-mean and a
standard deviation of ωσ. By applying the measurement
models defined in (11) to the simulated state trajectory
and adding the corresponding biases and measurement
noises, we obtain the simulated measurements. The mea-
surements of the accelerometer are expressed in its natural
physical unit, whereas the magnetometer measurements
are expressed in pseudo-units representing the magnetic
field vector of unit length. The necessary mapping to such
a unit can be achieved after a calibration procedure. All
simulation parameters are summarized in Table 1.

Table 1. Simulation Parameters

Variable Symbol Value Unit

Sim. time T 10 s

Sampling time ∆t 0.01 s

Initial orientation qLS0 [0, 0, 0]ᵀ deg

Gyroscope stddev ωσ 4.5 · 10−4 degs−1

Accelerometer stddev aσ 0.0186 ms−2

Accelerometer bias aδ 0.11 ms−2

Magnetometer stddev mσ 0.08

Magnetometer bias mδ 0.15

5.2 Results

The simulated control input and measurements of an imu
are used in this Section to estimate the attitude using
the moving horizon estimator explained in Section 4. The
estimator needs to be initialized with an initial guess for
the state values and covariances. All initial conditions for
the estimator are summarized in Table 2.



Table 2. Initial Conditions for Estimator

Variable Symbol Value Unit

Orientation qLS0
[10,−15, 5]ᵀ deg

Accelerometer bias a
Sδ [0, 0, 0]ᵀ ms−2

Magnetometer bias m
Sδ [0, 0, 0]ᵀ

Orientation stddev σqLS 0.15

Accelerometer stddev aσ 0.02 ms−2

Magnetometer stddev mσ 0.1

0.4

0.5

0.6

φ
[d

eg
]

N = 2 N = 5 N = 10 N = 20

0.5

0.6

θ[
d

eg
]

10−6 10−5 10−4 10−3 10−2 10−1 100 101

ρ

2

4

ψ
[d

eg
]

Fig. 3. Rmses as a function of the first order stabilization
contraction parameter ρ for different horizon lengths
N .

The estimator was implemented using the symbolic opti-
mization framework CasADi (Andersson et al., 2018) and
solved using the interior point solver IPOPT (Wächter and
Biegler, 2005). The framework allows us to run the estima-
tor for a set of different horizon lengths N = {2, 5, 10, 20}.
A comparison of the estimated orientation and the simu-
lated ground truth data for different values parameters of
the contraction factor ρ is shown in Fig. 3. The calculated
root mean square error (rmse) reveals that the estimation
performance does not primarily depend on the contraction
factor ρ. For all values of ρ ≤ 1 the rmses show only small
deviations which are invisible for the plotted range. Fur-
thermore, the estimation performance improves for larger
horizons N and therefore a horizon length N = 20 results
in the lowest rmse.
Even though the evaluation of the mean values of the

estimated states does not reveal significant differences
for different contraction factors ρ, it may be too early
to judge about its importance. Analyzing the standard
deviations calculated from the inverse of the kkt matrix
at the current solution of the optimizer x∗[i] reveals some
interesting behavior of the estimated uncertainty of the
accelerometer bias. Fig. 5a shows the estimated standard
deviations of the bias for each channel for a horizon
length of N = 5. For the x and y-channel, we see the
expected result for all different values of ρ. Due to the
initial orientation and the lack of excitation during the
first second of simulation, the bias in x and y-direction is
not observable and does not change a lot compared to its
initial value. The same arguments lead to the conclusion
that the bias in z-direction should be well observable due
to the signal of the gravity vector. Fig. 5a shows that this
expected behavior is only achieved for values of ρ ≥ 0.1.
The reason for this behavior can be explained with the help
of Fig. 4, which shows the standard deviations extracted
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Fig. 4. Estimated standard deviations of the arrival cost
covariance matrix P for the accelerometer bias. Each
line shows the result for a specific value of the con-
traction parameter ρ and is colored according to the
color bar.

from the covariance matrix P [i] during the calculation of
smoothed ekf arrival cost update. A larger contraction
parameter ρ has a tightening effect on the arrival cost.
Deviations from, as prior knowledge in the optimization

problem entering, x̂
[i]
0 will therefore be penalized stronger

for larger values of ρ. The tightening effect is introduced
over the Jacobian matrix Φ[i] of the dynamic model φ(x,u)
as described in Section 4.3. It is important to note that
the explained phenomena is not primarily driven by a
big change in the orientation uncertainty. The estimated
standard deviations of roll, pitch and yaw are not affected
by an increasing contraction parameter ρ. The online
identification of parameters, such as biases, is crucial in
the field of state estimation. Therefore, the variations of
the estimated standard deviations, as seen in Fig. 5a,
are undesired and may lead under different conditions to
a bad estimation performance. By using an additional
equality constraint (15c) at the end of the estimation
window, the estimated standard deviations show increased
robustness to changes of the contraction parameter ρ.
Fig. 5b reveals the expected standard deviation result for
the accelerometer bias. The bias in z-direction becomes
directly observable in the first second of simulation and
increases slightly as soon as the system gets excited. The
biases in x and y-direction stay at their initial value until
they become observable due to the excitation of the system
and converge asymptotically to a constant value defined by
the respective noise terms.

6. CONCLUSION

The use of over-parametrizations, such as quaternions for
orientation states successfully avoids phenomena such as
the gimbal lock and is therefore recommended for estima-
tion tasks in three dimensional space. These higher order
representations impose invariants to restrict its degree of
freedom. To guarantee that the invariants are satisfied,
the present study used a first-order stabilization of the
dynamics. Using a simple example of an mhe-based at-
titude estimator, we showed how the contraction factor
in the stabilization term can influence the estimation of
the standard deviations of the arrival cost and the current
state estimate. The contraction parameter ρ has a tighten-
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Fig. 5. Estimated standard deviation σ of the accelerome-
ter bias for each channel x, y, z over simulation time t
with (b) and without (a) using an additional equality
constraint at the end of each estimation window.
Each line shows the result for a specific value of the
contraction parameter ρ and is colored according to
the color bar.

ing effect on the arrival cost when calculated using the ekf
smoothed arrival cost update. As a result, the past has
a stronger impact on the current estimate. Even though
this is an interesting feature to increase the robustness
of the estimator, it should not influence the estimated
standard deviations under well-performing conditions. To
generalize the estimated standard deviations, we intro-
duced the use of an additional equality constraint at the
end of estimation horizon. The proposed method yields the
expected standard deviations and is robust to changes of
the contraction parameter of the stabilization.
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