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Abstract—This paper presents the pre- and post-fault
stator current control structures for symmetrical dual three-
phase reluctance synchronous machines (SDT-RSMs) with
different neutral-point configurations. The effect of wind-
ing chording and rotor saliency on the space harmonic
mapping among different subspaces is investigated. This
proves on one hand that the control structure in the pre-
fault case can be simplified, while on the other hand shows
that the derived harmonic mapping in literature is insuf-
ficient to ensure high performance operation in the post-
fault operation. Moreover, the machine non-linearities are
identified, through which the maximum-torque-per-ampere
(MTPA) loci are obtained and employed in the pre- and post-
fault cases. The theoretical findings are corroborated with
finite element simulations and experimental validations on
a 3 kW SDT-RSM prototype.

Index Terms—Dual three phase, current control, fault tol-
erant, reluctance synchronous machine, space harmonics.

NOMENCLATURE
Notation
R, N Set of real, natural numbers
n, m ∈ N Number of rows, columns
v ∈ R Real scalar
v ∈ Rn Real vector (bold), i.e. v = (v1, v2, ..., vn)>

||v|| Euclidean norm of v
||v||∞ Supreme norm of v, i.e. ||v||∞ =

max{|v1|, |v2|, ..., |vn|}
V ∈ Rn×m Real matrix (capital bold)
Subscripts and superscripts
�> Transpose operator for vectors or matrices
�s ’s’ denotes referencing to the stator
�Λλ

s ’Λ’ and ’λ’ are arbitrary variables repre-
senting the coordinates of a subspace (i.e.
Λλ ∈ {αβ, dq, XY, xy, 0+0−})

General
TVSD ∈ R6×6 Vector space decomposition matrix
Tp(φ) ∈ R2×2 Park’s transformation with angle φ ∈ R
Tk ∈ R6×2 Optimization matrix
kαδ , k

β
δ Scalar optimization parameters in Tk of the

δ ∈ {X, Y } coordinate
J ∈ R2×2 Rotation matrix, where J := Tp(π2 )−1
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u Electrical voltage (V)
i Electrical current (A)
î Electrical current amplitude at steady-state

(A)
ψ Flux linkage (Wb)
va1→c2s ∈ R6 Stator space vector in the (a1b1c1-a2b2c2)

frame, where v ∈ {u,ψ, i}
me Electromechanical torque (N·m)
mload Load torque (N·m)
np Pole-pair number
ωe Electrical angular speed (rad/s)
φe Electrical angular position (rad)
Θ Mechanical inertia (kg·m2)
σ Phase shift between the windings a1b1c1

and a2b2c2 (rad)
Rs Stator electrical resistance (Ω)
LΛλ

s ∈ R2×2 Inductance matrix of the Λλ subspace (H)
LΛ

s , L
λ
s Inductance of the Λ- and λ-axis (H)

LΛλ
m Λλ cross-coupling inductance (H)

I. INTRODUCTION

THE rapid development in power electronic components
and embedded systems over the last decade expedited the

adoption of multi-phase drives, especially with their power-
segmentation capability and the emergence of critical applica-
tions, requiring high levels of fault tolerance [1]. In particular,
dual three-phase (DT) drives received significant attention,
due to their relatively simple realization through rewinding of
standard three-phase machines and adopting two off-the-shelf
three phase inverters [2]–[8]. In literature, the DT windings
are embedded in the stator slots, while attaining a specific
spatial phase shift σ between the windings: 0 (rad) [8], π/6
(rad) asymmetrical [5], [6], [8], or π/3 (rad) symmetrical
arrangements [7]. Although the asymmetrical configuration is
the common type in literature, owing to its high quality flux
linkage, it is not guaranteed that such winding configuration
is feasible for all machines; since it depends on the number
of stator slots per pole. On the other hand, the symmetrical
configuration is not only realizable from any three-phase
machine, but can also generate in some cases higher levels of
electromechanical torque in post-fault operation [8]. Therefore,
the symmetrical DT (SDT) case is considered in this paper.

The most common types of DT machines are induction and
permanent magnet synchronous machines (PMSMs). Irrespec-
tive from the rotor type, a distinct feature of DT drives is
the necessity of employing harmonic regulators; to ensure the
flow of harmonic-free stator currents and, thus, minimize the
torque ripples [4], [6]. With the available body of literature,
it is clear that the current control structure is identical for



machines with similar σ, where the rotor type contributes only
to the magnitude of harmonic currents [7], [9].

With the present thrive of efficiency enhancements and
curtailing the dependance on rare earth elements, a prolifer-
ation of adopting reluctance synchronous machines (RSMs)
in several applications has been reported [10], [11]. To the
best of the authors’ knowledge, the adoption of RSMs in
multiphase applications, in particular SDT-RSMs, is seldomly
studied for either the healthy or post-fault (i.e. post open-
phase faults) cases. Attaining a high performance current
regulator is essential not only for the healthy operation, but
also in post-fault case, where the current regulator is the
underlying controller to post-fault optimization strategies [8],
[12]. Thus, it is of interest to investigate if the presented
generalized current controller structure for SDT drives in
[7] would be applicable to SDT-RSMs. Upon implementing
the controller in [7] and the post-fault strategy for SDT
drives in [8], the post-fault results indicated the presence
of unexpected low-order harmonic currents in the non-torque
producing subspaces, which is translated to high torque ripples
accompanied with significant acoustic noise. Additionally, it is
worth to mention that the known highly non-linear properties
of RSMs, as in [11], could give rise to further complications
from a current controller design perspective; impacting the
effectiveness of the post-fault operation. Furthermore, such
generalized approach in [7] did not consider the impact of rotor
saliency and the winding layout, in particular full-pitched and
chorded windings, when studying the harmonic mapping to
the different subspaces. In other words, the study of harmonic
mapping was limited to compensating the harmonics present in
the stator currents without either scrutinizing the impact of the
winding layout or even elucidating the possibility of inhibiting
the air-gap flux harmonics during the rewinding process.

As an attempt to fill this literature gap, this paper proposes
the adoption of SDT-RSMs coupled with the following con-
tributions:
• In-depth study concerning the impact of the wind-

ings configuration (chorded and full-pitched) and rotor
saliency on the harmonic mapping to the different control
subspaces. It is also pointed out that the rewinding
process can be carried-out in a manner that simplifies the
controller structure in the healthy case. Thus, reducing the
complexity and correspondingly the computation burden;

• Computing the non-linear flux linkages. Such identifica-
tion would not only contribute in enhancing the current
controller dynamics, but also ensures minimum stator
copper losses through the identification of the maximum-
torque-per-ampere (MTPA) loci. Such loci account for the
machine non-linearities without the need of conducting
finite element (FE) simulations; and

• The state of the art post-fault optimization strategy,
also known as the minimum-loss full range (MLFR), is
applied to the SDT-RSM. Such strategy is available in
literature only for asymmetrical DT drives. Moreover,
only through the identified MTPA loci one can ensure
maximum efficiency operation in the post-fault case.

This paper is organized as follows: Section II studies the
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Fig. 1. SDT-RSM current control structure, where the αβ and XY
controllers are shown in Fig. 4 based on the discussions in Section II-B
and Section III.

harmonic mapping to the different subspaces. Section III
identifies the non-linear flux linkages and computes the MTPA
loci. Section IV is the proposed current controller and its
comparison with the generalized controller in [7]. Section
V discusses the post-fault optimization and finally Section
VI depicts the experimental results on a 3kW SDT-RSM
prototype.

II. HARMONIC MAPPING IN SDT-RSM DRIVES

For SDT drives, the vector space decomposition (VSD)
transformation [7],
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decomposes the symmetrical six-phases quantities va1→c2s to
three orthogonal planes (vαβs , vXYs , v0

s )> = TVSDv
a1→c2
s =

vs,VSD, namely the equivalent αβ subspace governing the
electromechanical energy conversion, the XY subspace, which
has a direct influence in ensuring optimum post-fault oper-
ation, and 0+0− in the "0" subspace representing the zero
sequence components from both three-phase sets [8], [13]–
[15]. It is essential to identify and compensate for the dominant
harmonics per subspace; to ensure high performance with
minimum torque ripples. The general structure of a SDT drive
current controller is depicted in Fig. 1. Based on the developed
harmonic mapping for the αβ and XY subspaces in Section
II-B, their corresponding harmonic regulators are identified
and augmented to their fundamental controllers shown later in
Section IV. The laid out controller for the zero subspace in
Fig. 1 is explained next.

A. Triplet harmonics
The current i0s would only flow if the neutral point connector

in Fig. 1 switches from the double neutral (2N) to the single
neutral point (1N) configuration, which is only of interest in
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Fig. 2. MMF spectrum of (a) full pitched windings under ‖idqs ‖ = 1 p.u. excitation and 7/9 chorded windings configuration at (b) ‖idqs ‖ = 1 p.u.,
ixys = 02 and (c) idqs = 02, ‖ixys ‖ = 1 p.u. excitations.

0 1 2 3 4 5 6 7
0

0.2
0.4
0.6
0.8
1

Harmonic order

A
m

pl
itu

de
(p

.u
.)

0 1 2 3 4 5 6 7
0

0.1
0.2
0.3
0.4

Harmonic order

A
m

pl
itu

de
(p

.u
.)

(a) (b)
Fig. 3. Air-gap flux density spectrum of 7/9 chorded windings with uniform (in ) and salient (in ) air-gaps at (a) ‖idqs ‖ = 1 p.u., ixys = 02

and (b) idqs = 02, ‖ixys ‖ = 1 p.u. excitations.

the post-fault operation [8], [15]. In the post-fault case, the
1N configuration increases the torque per ampere capability
(i.e. higher torque production) of the drive in comparison
with the 2N case [8]. As discussed later in Section V, the
reference current i0s,ref represents forced fundamental currents
that would ultimately lead to optimal post-fault operation [15].
With respect to the harmonics present in the zero subspace,
it can be concluded from [4], [7], [9] that the zero subspace
is identical to asymmetrical drives in terms of the mapped
triplets harmonics to such subspace. Such triplets harmonics
are given by 3h, such that h ∈ {1, 3, 5, ...}, where the 3rd

and 9th harmonics are the dominant components. Based on
the previous discussion, the zero subspace controller in Fig. 1,
highlighted in , is enabled only in the post-fault case and
composed of harmonic regulators tuned at the fundamental
frequency, 3rd and 9th harmonics

(
i.e. ωe, 3ωe, 9ωe). In the

healthy case with 2N connection, the zero sequence controller
is disabled.

B. Non-triplet harmonics
As far as six-phase machines are considered in this work,

it is well-known that SDT windings have a π/3 phase belt
similar to conventional three-phase windings [16]. Therefore,
the SDT characteristics are essentially the same as a standard
three-phase machine [17]. For the asymmetrical six-phase
case, the phase belt is however reduced to π/6 by splitting
the phase belt of a three-phase winding into two halves. This
is why it is commonly called in literature as a split-phase dual
three-phase winding [16]. It is a matter of fact that the air-gap
distribution contains numerous harmonic components, among
them are the phase belt harmonics of order [17]

k =
2π l

σ
± 1, (2)

where σ is the phase belt angle and l ∈ N is a factor that
depends on σ. Hence, in an asymmetrical DT winding with
σ = π/6, the lowest order harmonics will be the 11th and
13th. While for a SDT with σ = π/3, the lowest order
harmonics will be the 5th and 7th similar to a standard three-
phase machine [7], [17]. Hence, the asymmetrical six-phase

winding corresponds to a much better flux distribution at a
relatively high synchronous winding factor. On the other hand,
a suitable coil chording for six phase drives should be consid-
ered to not only improve the flux distribution, suppress low
order harmonics (LOHs) and reduce the leakage inductances
[16], but also to improve especially the RSM performance
under field weakening operation [18]. It has been shown in [7]
that the non-triplet harmonics 6r ± 1 where r ∈ {1, 2, 3, ...}
of the magneto-motive force (MMF) of a SDT machine are
mapped to the fundamental αβ subspace. In that case, the
two dominant LOHs are the 5th and 7th components. This
conclusion did not consider, however, the effect of winding’s
coil span (i.e. full-pitched or chorded).

Unlike full-pitched coil, the MMF distribution of chorded
coils become asymmetrical over the stator periphery (i.e. over
the north and south poles), which induces even space harmon-
ics in the MMF spectra. For balanced αβ stator excitation, this
MMF asymmetry of individual coils has nothing to do with
the total MMF distribution. For machines with symmetrical
air-gap, these even harmonics influence neither the induced
armature voltage nor the generated torque; as the contribution
to the total average flux due to these harmonics over a full
pole-pitch will add to zero [17], [20]. Correspondingly, even
harmonic current components are usually not present. On the
other hand, odd air-gap flux density harmonics contribute only
to the induced armature voltage. For a reluctance rotor and
given its highly non-linear characteristics [11], the effect of
these even harmonics should, therefore, be carefully addressed,
which is a main objective of this paper.

Using the prototype stator employed in this study having
a 36-slot, 4-pole symmetrical six-phase double-layer winding
assuming full-pitched coils and unit ‖idqs ‖ = 1 p.u. excitation,
the MMF spectrum is shown in Fig. 2(a), while the total MMF
due to a unit xy current component in this case adds to zero.
As is clear from Fig. 2(a), employing full-pitched coils for a
winding with π/3 phase belt will introduce notable 5th and
7th MMF space harmonics. Therefore, a suitable selection of
the coil span is 7/9 (commonly used for this slot number and
termed the optimum chording angle), which would minimize
the dominant LOHs. Figs. 2(b)-(c) show the MMF spectra of
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Fig. 4. Pre- and post-fault current controllers of the (a)-(b) αβ and (c)-(d)XY subspaces, where (a) and (c) are as given by [7], while (b) and (d)
are the proposed controllers. The highlighted blocks, PI and R controllers in are enabled only in the post-fault case, which are discussed in
Section V, while the highlighted R controller in is activated additionally when computing the flux linkage ψxys as described in Section III-A.

7/9 chorded windings under unit idqs and ixys current com-
ponents, respectively. Clearly, under xy excitation, the MMF
distribution experiences even harmonics with notable magni-
tudes (the 2nd harmonic is approximately 30% of fundamental
component). From winding function theory, the air-gap flux
distribution can simply be approximated by the product of the
MMF distribution with the inverse air-gap function [20], which
eventually leads to an air-gap flux density spectra with similar
harmonic spectra for cylindrical rotors. Hence, the notable
even harmonics, especially the 2nd harmonic in Figs. 3(a)-
(b), are introduced in the air-gap flux density distribution
without inducing corresponding harmonic voltage components
across different phases. Therefore, under xy excitation, the
introduced even harmonics have no effect on the induced stator
voltage. They only, however, contribute to the leakage flux
component. Moreover, the rotor saliency of the SDT-RSM will
further distort the air-gap flux density distribution and the air-
gap flux spectrum will experience both odd (especially the
5th harmonic) and even harmonics when the rotor is running
(see highlight in Fig. 3(b)). If the air-gap saliency and
chorded winding arrangement would be neglected as in [7],
one would overlook the presence of odd harmonics associated
with xy subspace excitation (see highlight in Fig. 3(a)-
(b)). This would prompt harmonic components in the event
of ixys injection as in the post-fault case in Section V. In
conclusion, to improve the flux distribution of symmetrical
six-phase machines, stator windings with chorded coils are
used to suppress the 5th and 7th harmonics mapped to the αβ
subspace. However, the winding chording will introduce both
even and odd harmonics, under xy excitation with salient pole
rotors as in SDT-RSM. Therefore, a harmonic compensation

of low order odd harmonics should be introduced in the
xy subspace. FE simulations are provided in Section VI to
validate the effect of xy subspace excitation and the generation
of low order harmonics.

As explained in [7], the presence of low-order odd harmon-
ics in the αβ subspace is similar to the three-phase harmonic
mapping. However, such harmonics can be significantly re-
duced during the rewinding process from three to dual three-
phase. For the same machine, when doubling the number of
phases at a constant rated power, halving either the rated
voltage or current is considered a degree of freedom. Halving
the rated current, which is the one followed in this paper, will
eventually double the circuit inductance compared to that of
the original three-phase machine. Thus, the contribution of the
odd harmonics will decrease in the αβ subspace owing to the
increase in the circuit impedance. Based on the aforementioned
discussion and winding layout, the control in the αβ frame
can be dedicated only to regulate the fundamental component,
while the low-order harmonics mapped to the XY subspace
would be compensated only during post-fault operation, where
iXYs 6= 0, or during flux linkage maps identification (shown
later in Section III-A). These conclusions propose the control
structure in Figs. 4(b) and (d), which is different than that
proposed in literature for SDT drives, as proposed in [7], and
shown in Fig. 4(a) and (c). It is worth to mention that if the
optimum chording angle was not applied, the αβ controller
will encompass significant 5th and 7th harmonics requiring
their compensation

(
see Fig. 4(a)

)
. Nevertheless, the XY

control structure would remain as proposed in Fig. 4(b).
Table I summerizes the findings in Section II with respect
to the harmonic mapping and its comparison to that in [7].
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TABLE I. Harmonic mapping summary for the SDT-RSM with the
proposed rewinding as in Section II and its comparison with that in [7].

Subspace Harmonics [7] Section II

αβ
6r ± 1, where
r ∈ {1, 2, 3, ...}

Neglected

XY Neglected
6r ± 1, where

r ∈ {1, 2, 3, ...}

zero 3h, where h ∈ {1, 3, 5, ...}

III. FLUX LINKAGE MAPS IDENTIFICATION

Owing to the highly non-linear flux variations in RSMs
[11], identifying such non-linearities is essential to ensure high
performance torque control and optimal tuning of the current
controllers which leads eventually to fast dynamics [21]. This
is carried out through identifying the flux-linkage maps of the
different subspaces, in a similar manner to those identified for
asymmetrical DT-PMSM in [4].

Using the transformation TVSD in (1), while applying the
synchronously rotating Park transformation,

Tp(φe)−1 =

[
cos(φe) sin(φe)

− sin(φe) cos(φe)

]
, (3)

to the αβ subspace and the anti-synchronous transformation
Tp(−φe)−1 = Tp(φe) to the XY subspace, the SDT-RSM
dynamic model is

udqs = Rs i
dq
s + ωe Jψ

dq
s + d

dtψ
dq
s

uxys = Rs i
xy
s − ωe Jψ

xy
s + d

dtψ
xy
s

u0
s = Rs i

0
s + d

dtψ
0
s

Θ
np

dωe

dt = 3npi
dq
s

>
J ψdqs︸ ︷︷ ︸

=:me

−mload


, (4)

where the drive parameters are shown in Table II. For a
given subspace at steady-state, to identify the contribution of
the current components to the corresponding flux linkages,
one has to ensure that such current coordinates are orthogonal
and independently controlled without exciting the remaining
subspaces [11].

TABLE II. Parameters of the employed SDT-RSM drive.

Parameter Value

Stator resistance Rs = 2.51 Ω
Pole-pair np = 2

Rated peak stator current îs,rated = 5 A
Rated torque me,rated = 9.6 N·m
Inertia Θ = 94× 10−4 kg·m2

Rated mechanical speed 3000 RPM
Sampling and switching frequencies fsw = 8 kHz

A. ψdqs and ψxys flux linkage identification
Using the control structure in Fig. 4(b), setting ixys = 0 (i.e.

iXYs,ref = 0) in Fig. 4(d) and operating with a 2N connection
(i.e. i0s = 0), one can at steady-state rewrite the dq dynamics
in (4) as

ψdqs =
J−1

ωe
(udqs −Rs i

dq
s ), (5)

where for a given idqs , controller output udqs and ωe 6= 0, the
flux linkage ψdqs can be computed. Sweeping idqs within the
interval ||idqs || ≤ îs,rated, the corresponding ψdqs is computed
and plotted as in Figs. 5(a)-(b). The differential inductance
matrix1 defined as

Ldqs =

∂ψds∂ids

∂ψds
∂iqs

∂ψqs
∂ids

∂ψqs
∂iqs

 =

[
Lds Ldqm

Ldqm Lqs

]
(6)

is computed from ψdqs , processed using Matlab, and employed
within the tuning of the current controller, as shown later
in Section IV-A. A similar procedure is repeated to estimate
the variation of ψxys with respect to ixys within the interval
||ixys || ≤ îs,rated, while setting idqs,ref = 0. The employed
control structure for the xy subspace is depicted in Fig. 4(d)
with the activation of the R controller in ; to compensate
for the LOHs. Accordingly the differential inductances Lds ,
Lqs , and the cross-coupling inductance Ldqm are shown in
Figs. 6(a)-(c), respectively, while Lxs , Lys , and Lxym are shown
in Figs. 7(a)-(c), respectively, as in [4], [11].

1Details on nonlinear modelling and the use of differential inductances
in electrical drives can be found in [22, Chap. 14].
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B. Zero flux linkage
For asymmetrical drives, the 0+0− coordinates of the zero

subspace components (i.e. triplet harmonics) are deemed or-
thogonal through a series connection of the phases belonging
to the same three phase sets; leading to successful identifica-
tion of ψ0

s with respect to i0s , such that ||i0s || ≤ îs,rated [4]. On
the other hand, it is impossible for SDT drives to configure a
hardware connection; which would eventually lead to an or-
thogonal space variation between ψ0+

s and ψ0−
s as in [4], [23];

since triplet components are out-of-phase (i.e. π phase shift).
In other words, identifying the zero flux linkage vector ψ0

s

within the interval ||i0s || ≤ îs,rated, similar to the procedures
in [4], is inapplicable. Nevertheless, it is permissible to assume
in advance that the zero subspace inductances L0+

s and L0−
s

would not significantly vary in the interval ||i0s || ≤ îs,rated,
as with Lxs and Lys for ||ixys || ≤ îs,rated [4]. Accordingly,
the hardware connection in Fig. 8 is proposed to estimate
L0+

s and L0−
s by connecting the voltage-source inverter (VSI)

terminals 1 2 with ζ1 ζ2 or λ1 λ2 , respectively. Even
though the zero subspace coordinates are not orthogonal, such
connections allows still to independently control the currents
in both windings without exciting the other subspaces

(
i.e.

vαβs = vXYs
(1)
= 0 since vaγ

s = v
bγ
s = v

cγ
s for γ ∈ {1, 2}

)
.

Thus, one can asses the variation severity of the inductances
L0+

s and L0−
s with respect to i0s . The relation between the VSI

applied voltages, phase and subspace currents is

u
VSIγ
s = u

aγ
s + u

bγ
s + u

cγ
s

(1)
= 3uΓ

s ,

i
aγ
s = i

bγ
s = i

cγ
s =⇒ iΓs

(1)
= i

aγ
s ,

}
(7)

where Γ ∈ {0+, 0−}. Neglecting the coupling between the
0+0− coordinates

(
i.e. as in Lxym in comparison with Lxs

and Lys in Fig. 7
)

and Rs as a known parameter, voltages
of determined frequency are applied to each three-phase set
separately and the phase shift between the applied voltage
and the stator currents are measured. This is mathematically
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uc1
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ub2
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uc2
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ζ2

ζ2

λ1

λ1

λ2

λ2

Fig. 8. Hardware connection for identifying the inductances L0+
s and

L0−
s . Connecting the terminals 1 2 with ζ1 ζ2 allows to compute

L0+
s , while the connection with λ1 λ2 allows to compute L0−

s .

represented by

u
VSIγ
s = û cos(ωVSIt), ∀û > 0,

iΓs = î cos(ωVSIt+ φL), ∀î > 0,

}
(8)

where î is the amplitude of the current at steady-state, ωVSI

is the arbitrary angular frequency of the applied voltage by
the VSI and φL is the phase shift angle, through which the
corresponding inductances are estimated. Table III shows the
corresponding results by running the SDT-RSM externally at
ωe = 100 rad/s, while exciting each three-phase set separately.
It is observed that the inductances L0+

s and L0−
s are not signifi-

cantly affected by the flowing currents. Thus, it is acceptable to
consider that L0+

s and L0−
s are both constants, as indicated by

the average values in Table III. Moreover, the test was repeated
to estimate L0+

s and L0−
s , while exciting simultaneously the



TABLE III. Tests to estimate L0+
s and L0−

s in Fig. 8 at ωe = 100 rad/s.

Connect 1 → ζ1 and 2 → ζ2 to estimate L0+
s

û (V) î (A) ωVSI (rad/s) φL (rad) L0+
s (mH)

7.25 1.0 60 0.12 5.02
63.23 5.0 60 0.932 5.39

Average: 5.21

Connect 1 → λ1 and 2 → λ2 to estimate L0−
s

û (V) î (A) ωVSI (rad/s) φL (rad) L0−
s (mH)

7.9 1.0 60 0.1138 4.746
61.6 5.0 60 0.913 5.173

Average: 4.96

opposite three-phase set by î = 5 A (i.e. estimating L0+
s while

i0
−

s = 5 cos(ωVSIt+ φL), and vice versa). The corresponding
outcome for each inductance did not exceed 4% than the
average values in Table III, indicating that the cross-coupling
between the 0+0− can be neglected.

IV. PROPOSED CURRENT CONTROLLER

A. Current controllers
The identified flux linkage maps and the corresponding dif-

ferential inductances are employed for tuning the fundamental
proportional-integral (PI) regulators in Figs. 4(b) and 4(d).
The output of the the PI block diagram in Figs. 4(b) and
4(d) comprise both the output of the PI controller as well
as the feedforward disturbance compensation terms. This is
mathematically denoted by

udqs,ref = udqs,PI + udqs,dist,

uxys,ref = uxys,PI + uxys,dist,

}
(9)

where the tuning of the PI controller is discussed in Sec-
tion IV-A1 and the feedforward compensation is shown in
Section IV-A2

1) PI controller tuning: The tuning strategy is designed
according to the magnitude optimum criterion along with
parametrizing the PI controller gain and time constant per
every idqs [11]. Thus, the proportional gain Vp and integral
time constant Ti of the PI controllers in the dq and xy frames
in Figs. 4(b) and 4(d) are adaptively tuned as follows(

V dp , V
q
p , V

x
p , V

y
p

)
= fsw

2

(
L̂ds , L̂

q
s , L̂

x
s , L̂

y
s

)
,(

T di , T
q
i , T

x
i , T

y
i

)
= 1

Rs

(
L̂ds , L̂

q
s , L̂

x
s , L̂

y
s

)
,

}
(10)

where(
L̂ds , L̂qs

)
= det

(
Ldqs (idqs )

) ( 1
Lqs
, 1

Lds

)
,(

L̂xs , L̂ys
)

= det
(
Lxys (ixys )

) ( 1
Lys
, 1

Lxs

)
.

 (11)

The tuning of the zero subspace proportional-resonant (PR)
controller follows the same procedure as in (10) with the only
exception, that the inductance variations in the zero subspace
are neglected. Thus, the PR controller is tuned by(

V 0+

p , V 0−
p

)
= fsw

2

(
L0+

s , L0−
s

)
,(

T 0+

i , T 0−
i

)
= 1

Rs

(
L0+

s , L0−
s

)
.

 (12)
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Fig. 9. Estimated torque parabolas along with the MTPA loci confined
within the designated rated current îs,rated loci, as indicated in Table II.

2) Feedforward disturbance compensation: To further en-
hance the dynamics of the dq and xy subspaces, decoupling
the coordinates based on the identified ψdqs and ψxys is em-
ployed [11]. The disturbance voltage udqs,dist encompasses the
coupling terms between the dq coordinates, which is computed
by

udqs,dist = −Ldqm

[
0 1

L̂qs
1
L̂ds

0

]
(udqs −Rs i

dq
s −ωe Jψ

dq
s )−ωe Jψ

dq
s .

(13)
Note that udqs,dist is added to the output of the PI controllers,
but not shown in Fig. 4(b). Similarly, the decoupling between
the xy coordinates, similar to (13), is

uxys,dist = −Lxym

[
0 1

L̂ys
1
L̂xs

0

]
(uxys −Rs i

xy
s −ωe Jψ

xy
s )+ωe Jψ

xy
s .

(14)
The presence of 5th and 7th harmonics in the XY subspace

(i.e. 6th harmonic in the xy subspace) is considered a dis-
turbance, requiring a resonant (R) controller (see Fig. 4(d))
to compensate such disturbance. The R controller in the xy
subspace is enabled only when ixys 6= 0, which is the case
when computing the flux linkage ψxys or in the post-fault
operation as explained in Sections III-A and V, respectively.

B. Maximum-torque-per-ampere (MTPA)
Based on the identified ψdqs in Fig. 5(a)-(b) and using (4),

it is possible to estimate the torque map, which is a four
quadrant plot showing the torque me in both motoring and
generating modes over idqs within the interval ||idqs || ≤ îs,rated

[21]. Fig. 9 depicts the first-quadrant (i.e. motor quadrant)
of the aforementioned plot. For every torque parabola in
Fig. 9, it is possible to compute the point of minimum
current magnitude ||idqs ||, which would eventually lead to the
MTPA loci (see in Fig. 9). Unlike the MTPA plots for
RSM obtained in [24], the MTPA plot in Fig. 9 accounts
for all possible values of ||idqs || ≤ îs,rated. As expected,
the rated current îs,rated in Fig. 9 corresponds to the rated
torque me,rated (see Table II), as verified experimentally in
Section VI. Moreover, for a given reference torque me,ref and
using the MTPA loci, the corresponding reference currents



idqs,ref
Tp(φe)in Fig. 9

iαβs,ref
me,ref

Fig. 4(b)uαβs,ref

Fig. 10. Torque controller of the SDT-RSM, where the me,ref is trans-
lated into idqs,ref using the MTPA loci in Fig. 9. The current iαβs,ref is fed
into Fig. 4(b).
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Fig. 11. Comparison between the torque and the corresponding stator
power losses upon applying the different optimization strategies.

idqs,ref are dispatched to the underlying current controller in
Fig. 4(b) (i.e. iαβs,ref = Tp(φe)−1idqs,ref ) as indicated in Fig. 10.
Furthermore, the estimated MTPA loci idqs will be employed
in the post-fault operation as shown in the upcoming section.

V. POST-FAULT OPERATION

The study of fault tolerance is often addressed in literature
assuming that the fault has been cleared, which leads to one or
more open-phases [8], [12], [15], [19], [25]. This is also known
as open-phase fault. In literature, three possible post-fault oper-
ating strategies exist: minimum stator losses (ML), maximum
torque (MT), and the minimum losses full-range (MLFR) [8],
[15], [25]. The ML optimization constraints minimize the
total stator Joule losses for a given reference torque, leading
to limited torque-production capability and unequal loading
of different phases [25]. MT equalizes the losses for the
remaining healthy phases up to the rated current value, which
eventually maximizes the produced electromagnetic torque at
the expense of higher total copper losses, compared to ML
[25]. The MLFR optimization was recently developed only
for the asymmetrical DT drives. It combines the merits of ML
and MT, where minimum losses would be ensured up to the
maximum torque realized by the MT strategy [15]. Moreover,
it is possible to further manipulate the MLFR to include the
drive voltage limits within the optimization constraints [19].
The currents iXYs,ref and i0s,ref in [19] are set at steady state
dependant on iαβs,ref

(
see Fig. 4(b)

)
, depending on the neutral

configuration (i.e. 1N or 2N) and the faulty phases, to achieve
the optimization objectives.

From a mathematical perspective, is,VSD can be related to
iαβs at steady state in the post-fault case as [12], [15] by


iαβs,ref

iXYs,ref

i0s,ref

 =



1 0
0 1

kαX kβX
kαY kβY

−1− kαX −kβX
1 + kαX kβX


︸ ︷︷ ︸

=:Tk ∈ R6×2

iαβs,ref , (15)
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Fig. 12. Variation of elements of the optimization matrix Tk with respect
to post-fault torque for the MLFR strategy.

TABLE IV. Outcome summary of the optimization in (16) and (17)
showing the matrix elements Tk with respect to ML, MT, and MLFR.

Tk elements ML MT MLFR

kαX −0.75 −0.53

se
e

Fi
g.

12

kβX 0 −0.28

kαY 0.255 0.01

kβY 0 0.34

where Tk is the optimization matrix consisting of its scalar
parameters kαX , kβX , kαY , and kβY when running the fmincon
optimizer in Matlab upon passing the cost function and its
constraints as seen shortly. Considering only one open-circuit
fault in this study and following in the footsteps of [12], [15]
by defining the sets of phases as S ∈ {a1, ..., c2}, faulty
phases Sf and the healthy phases Sh := S\Sf (i.e. Sh∩Sf =
∅); the objective function to minimize the stator copper losses
pCu is written as

min
Tk

pCu =
(iShs )> iShs
6(is,rated)2

, (16)

subject to the following constraints:
g1 : i

ρf
s = 0, ∀ρf ∈ Sf

g2 :
∑

ρh∈Sh
iρhs = 0,

g3 : me = me,ref ,

g4 :

 îρhs = î ≤ îs,rated, ∀ρh ∈ Sh MT case,
||iShs ||∞ ≤ îs,rated MLFR case,
Discard ML case,


(17)

where the constraint g4 is (i) discarded for the ML case, (ii)
ensures for the MT case that the remaining phases would
carry equal currents up to îs,rated, or (iii) manipulates Tk for
the MLFR optimization such that remaining phase currents
would saturate one after the other and not exceed îs,rated.
Even though such optimizations are, in principle, applicable
for SDT drives by utilising the transformation in (1) instead of
that for asymmetrical DT in [15], [25], the main contributions
of this paper to the SDT-RSM post-fault operation are:
• Taking into account the non-linearity of the SDT-RSM by

adopting the MTPA loci in Fig. 9, which will be the basis
for the ML, MT, and MLFR post-fault optimizations.
The corresponding results are shown in Fig. 11 for each
strategy with the corresponding elements of the Tk matrix
in Table IV and Fig. 12. The maximum permissible post-



Fig. 13. FE simulation showing the stator voltages at (a) ‖idqs ‖=1 p.u. excitation and (b) ‖ixys ‖=1 p.u. and the resulting me for each case in (c).

I IIIII

Fig. 14. Test bench: (I) SDT-RSM, (II) induction machine (i.e. prime
mover) and (III) torque sensor.

fault torque me,max is 0.675 p.u., which is less than that
of 0.771 p.u. for SDT-PMSM drives with 1N connection
in the unified fault tolerant analyses in [8]. This is due to
the fact that for RSM drives, a portion of the current
vector idqs is used for magnetizing the machine, and
accordingly results in a lower torque me,max; and

• Proposing the control structure highlighted in in
Figs. 4(b) and 4(d), owing to the harmonic mapping
discussed in Section II-B. The significant 5th and 7th

harmonics in the XY subspace (i.e. 6th harmonic in
the xy subspace) are compensated by means of the
R controller, tuned at 6ωe, which lead to acceptable
performance as seen later in the experimental results. The
controllers within are triggered only in the post-fault
operation.

VI. EVALUATION RESULTS

A. Finite element simulations
First, the FE simulation is carried-out to theoretically ex-

plain the effect of the rotor saliency on the harmonic mapping.
The simulation was executed by rotating the machine at 1500
rpm with a 2N configuration, while exciting the stator with
1 p.u. currents once via the αβ subspace, while the other
time via XY subspace. The corresponding stator voltages
are shown in Figs 13(a)-(b), respectively. Exciting the αβ
subspace resulted in almost harmonic-free phase voltages uκs ,
where κ ∈ {a1, b1, c1, a2, b2, c2}; owing to the rewinding
technique followed as explained in Section. II-B. It is con-
cluded that controlling only the fundamental component in
the αβ subspace would be sufficient (see Fig. 4(b)) without
the need of employing resonant (R) controllers for the LOHs
as in [7] (see Fig. 4(a)). On the other hand, exciting the XY
subspace lead to the generation of the LOHs in such subspace.
Using an opposite analogy, applying fundamental voltages in
the XY subspace without harmonic controllers would lead

to substantial generation of LOHs. This depicts the need for
harmonic R controllers (see Fig. 4(d)), if such subspace is to
be excited, as in the post-fault operation.

B. Experimental validation
1) Test-bench description: From a practical validation per-

spective, the test bench in Fig. 14 was set-up consisting of
a SDT-RSM (in torque-controlled mode) coupled to a three-
phase induction machine acting as prime mover (i.e. speed
controlled). Both machines share the same DC-link voltage
and are controlled via the field-oriented control structure.
Using Matlab/Simulink, the control algorithm is implemented
on a dSPACE DS1007 board. The PWM signals are sent to
the VSIs via the DS5101 PWM card, where the triggering
signals are manually programmed to ensure precise timings
and sampling instants. The A/D DS2004 board is triggered by
the DS5101 board to carry-out the measurements in the middle
of the switching period. The SDT-RSM control structure is
as depicted in Fig. 1, where the reference voltages uαβs,ref

and uXYs,ref are the outputs of the their corresponding con-
trollers in Figs. 4(c) and 4(d), respectively. The implemented
PI controllers of the SDT-RSM are tuned as explained in
Section IV-A with the aid of the flux linkage and differential
inductances in Figs. 5-7. The resonant controllers are dis-
cretized via the impulse-invariant method to ensure stability
and precise lock on the tuned resonant frequency [26].

2) Experimental results: Fig. 15 verifies the MTPA loci
when setting the me,ref = me,rated at a 2N connection in a
healthy operation, while the αβ and the XY control structures
were as shown in Figs. 4(b) and 4(d), respectively. Fig. 15(a)
shows that the desired torque reference was generated via
regulating idqs in Fig. 15(b) and correspondingly the stator cur-
rents ia1→c2

s in Fig. 15(c), which concludes that R controllers
are not needed in the healthy case with a 2N connection.
The corresponding flux linkages ψdqs and ψxys are shown in
Fig 15(d). On the other hand, by exciting the XY subspace
(or xy subspace), as shown in Fig. 16 using the suggested
control structure of [7] in Fig. 4(c), led to the generation
of LOHs (mainly the 5th and 7th harmonics). Increasing
the flow of currents in the XY subspace will give rise to
substantial increase of the harmonic content in ia1

s as seen
in Figs 16(b)-(d). Employing the proposed control structure
in Fig. 4(d) will compensate such LOHs for the same ixys

excitation, as seen in Figs. 17(a)-(d). The xy flux linkage ψxys



Fig. 15. Pre-fault stator currents at me,rated corresponding to the MTPA criteria when applying the proposed rewinding with 2N configuration and
only PI controllers in the dq- and xy-subspaces: (a) Reference and measured torque, (b) idqs,ref and idqs , (c) ia1→c2s , and (d) ψdqs and ψxys .

Fig. 16. Effect of different ixys current injections and the harmonics associated with the stator currents at 1000 rpm: (a) ixys,ref and ixys , and (b)-(d)
the corresponding ia1→c2s . The xy control structure in [7] (see Fig. 4(c)) is employed in this test.

Fig. 17. Effect of different ixys current injections along with harmonic compensation
(
see R-controller highlighted in in Fig. 4(d)

)
in the xy

subspace showing the stator currents 1000 rpm: (a) ixys,ref and ixys , and (b)-(d) the corresponding ia1→c2s .

Fig. 18. The flux linkage ψxys corresponding to ixys = (5, 0) A within the interval 14 ≤ t ≤ 14.06 s in (a) Fig. 16(d) and (b) Fig. 17(d).

corresponding to the currents ixys in Figs. 16(d) and 17(d)
are indicated in Figs. 18(a) and (b), respectively. Such plots
confirm the outcomes of Section II-B that the 6th harmonic
would evolve in the xy subspace for any ixys excitation.
Furthermore, Figs. 18(a) and (b) depict the coupling between
xy coordinates, where ψys 6= 0 for ixys = (5, 0) A, unlike the
assumption of decoupled ψxs and ψys in the available body of
literature [5]–[7], [12], [15].

For testing the MLFR post-fault operation in Fig. 11, the

circuit breaker of phase a1 was deliberately disconnected
(i.e. ia1

s = 0). The neutral point connection 1N was config-
ured owing to its higher torque-per-ampere characteristic in
comparison with the 2N configuration [8], [19]. Combining
the control structure of the αβ and the XY subspaces in
Figs. 15(b) and 15(d), respectively, with the zero subspace
controller in Fig. 1, high quality stator currents were observed
in Figs. 19(a) and 19(b), which correspond to me = 0.1 p.u.
and me = me,max = 0.675 p.u. in Figs. 19(c) and 19(d),



Fig. 19. Post-fault operation for the 1N connection at ωe = 0.478 p.u. corresponding to the MLFR optimization in [19] at showing the stator currents
of the healthy phases at (a) me = 0.1 p.u. and (b) me,max = 0.675 p.u. as well as the measured mechanical quantities in (c) and (d), respectively.

respectively. In Fig. 19(a), the stator currents are of unequal
magnitude; since a torque reference me,ref = 0.1 p.u. for the
MLFR corresponds to a ML optimization (see Fig. 11), while
the current magnitudes in Fig. 19(b) correspond to me,max,
which is the maximum operating point for the MT strategy.

VII. CONCLUSION

This paper presented a different methodology in identifying
the harmonics related to every subspace of a SDT-RSM drive,
where its importance is inevitable to ensure high performance
post-fault operation. Employing a double layer stator winding
with chorded coils and an optimal chording angle waived the
need for harmonic controllers in the healthy 2N case, unlike
the proposed control structures available in literature. Even
if the optimum chording angle was not applied, both the
αβ and XY subspaces of the SDT-RSM comprise the 5th

and 7th harmonics. In that particular case, the αβ controller
should compensate such harmonics, similar to the control
structure given in literature. Upon identifying the non-linear
flux linkages in the αβ subspace, the torque map is estimated,
which takes into account the effects of cross-coupling and
saturation. Based on the estimated torque maps, the MTPA loci
were identified, which were used in both the pre and the post-
fault operations. Combining the proposed control structure
with the available recent post-fault optimization strategy, it is
possible to ensure a high quality of stator currents in the pre
and post-fault cases. FE simulations were provided to verify
the proposed harmonic mapping. The theoretical findings were
corroborated on 3 kW test bench, where experimental results
have been carried out for the sake of validation.
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