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ABSTRACT
A unified theory for optimal feedforward torque control of anisotropic synchronous machines with
non-negligible stator resistance andmutual inductance is presented which allows to analytically com-
pute (1) the optimal direct and quadrature reference currents for all operating strategies, such asmax-
imum torque per current (MTPC), maximum current, field weakening, maximum torque per voltage
(MTPV) or maximum torque per flux (MTPF), and (2) the transition points indicating when to switch
between the operating strategies due to speed, voltage or current constraints. The analytical solu-
tions allow for an (almost) instantaneous selection and computation of actual operation strategy
and corresponding reference currents. Numerical methods (approximating these solutions only) are
no longer required. The unified theory is based on one simple idea: all optimisation problems, their
respective constraints and the computation of the intersection point(s) of voltage ellipse, current cir-
cle or torque, MTPC, MTPV, MTPF hyperbolas are reformulated implicitly as quadrics which allows to
invoke the Lagrangian formalism and to find the roots of fourth-order polynomials analytically. The
proposed theory is suitable for any anisotropic synchronousmachine. Implementation andmeasure-
ment results illustrate effectiveness and applicability of the theoretical findings in real world.

Notation

N, R, C: natural, real, complex numbers. x :=
(x1, . . . , xn)� ∈ R

n: column vector, n ∈ N where ‘�’ and
‘:=’ mean ‘transposed’ (interchanging rows and columns
of a matrix or vector) and ‘is defined as’, respectively. 0n ∈
R

n: zero vector. a�b := a1b1 + · · · + anbn: scalar product
of the vectors a := (a1, . . . , an)� and b := (b1, . . . , bn)�.
‖x‖ :=

√
x�x = √x21 + · · · + x2n: Euclidean norm

of x. A ∈ R
n×n: (square) matrix with n rows and

columns. A−1: inverse of A (if exists). A−�: inverse
transpose of A (if exists). det(A): determinant of A,
spec(A): spectrum of A (the set of the eigenvalues
of A). In ∈ R

n×n := diag(1, . . . , 1): identity matrix.
On×p ∈ R

n×p: zero matrix, n, p ∈ N.
Tp(φk) = [ cos(φk ) − sin(φk )

sin(φk ) cos(φk )
]: park transformation

matrix (with electrical angle φk) and J := Tp(π/2) =
[ 0 −1
1 0 ]: rotation matrix (counter-clockwise rotation by π

2 ;

CONTACT Christoph M. Hackl christoph.hackl@tum.de
*Authors are in alphabetical order and contributed equally to the paper.

see e.g. Dirscherl, Hackl, & Schechner, 2015; Teodorescu,
Liserre, & Rodríguez, 2011). ‘s.t.’: subject to (optimisa-
tion with constraints). j: imaginary unit with j2 = √−1,
‘ !=’: must equal. X�Y: intersection of the sets X and Y (in
this paper: X, Y ⊂ R

2).

1. Introduction

1.1 Motivation

Energy shortage and environmental impacts prompted
engineers to improve the efficiency of electric drives;
especially when studies indicated that electric machines
consume more than half of the globally generated elec-
tricity (de Almeida, Ferreira, & Fong, 2011). Accordingly,
major research and development advancements in the
control and modelling of electric drives have been over-
seen. Special focus was set on permanent-magnet (PM)
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synchronous motors (SMs) owing to their high power-
density ratios, efficiency, flexibility and dynamic perfor-
mance. It was explained in Morimoto, Takeda, Hirasa,
and Taniguchi (1990), by considering the anisotropy of
the PMSM rotor, one would be able to generate the same
torque profile, as that obtained for zero direct-axis control,
at a reduced magnitude of the stator current. As a mat-
ter of fact, this anisotropy laid the foundation for reluc-
tance synchronous machines (RSMs). The anisotropy in
the rotor introduces a high degree of saliencywhich could
be manipulated through optimised rotor design to not
only produce the necessary reluctance torque but also to
generate a constant power speed range (compatible with
field weakening (FW) operation; Wang, Ionel, Jiang, &
Stretz, 2016). A hybrid machine that combines the mer-
its of both PMSMs and RSMs (i.e. less rare-earth PM
with high saliency ratio) is also known as PM-assisted
RSM (PMA-RSM) (Boldea, Tutelea, Parsa, & Dorrell,
2014; Wang et al., 2016) or PM-enhanced RSM (PME-
RSM) (Schmidt, 2014). Since copper losses dominate the
electric losses for suchmachines, a reduction in the stator
current magnitude, for a given load torque, will explic-
itly lead to higher efficiencies. Throughout this paper,
the abbreviation ‘SMs’ will be used when referring to
PMSMs, RSMs, PMA-RSMs or PME-RSMs. Two feasi-
ble approaches to enhance the efficiency of SMs are (1)
improving the stator or rotor design (Boldea et al., 2014;
Wang et al., 2016; Zhang, Ionel, & Demerdash, 2016)
or (2) extracting the highest possible efficiency by opti-
mising the adopted torque controller, which is the topic
under study in this paper.

1.2 Literature review

The optimal feedforward torque control problem has
been investigated in numerous publications: for maxi-
mum torque per ampere (MTPA) or maximum torque
per current (MTPC1), see e.g. Cavallaro et al. (2005),
Cheng and Tesch (2010), Finken (2012), Gemassmer
(2015), Jung, Hong, and Nam (2013), Lemmens, Vanass-
che, and Driesen (2015), Morimoto et al. (1990), Niazi,
Toliyat, and Goodarzi (2007), Ni et al. (2015), Panaitescu
and Topa (1998), Preindl and Bolognani (2015), Schröder
(2009), Schoonhoven and Uddin (2016), Urasaki, Senjyu,
and Uezato (2003); for FW, see e.g. Jung et al. (2013),
Kim, Jeong, Nam, Yang, and Hwang (2015), Preindl
and Bolognani (2013b), Preindl and Bolognani (2015),
Schoonhoven and Uddin (2016), Zhang et al. (2016); and
for maximum torque per voltage (MTPV), see e.g. Ahn
et al. (2007), Horlbeck and Hackl (2016), Jung et al.
(2013), Preindl and Bolognani (2013b), Tursini, Chiri-
cozzi, and Petrella (2010), to name a few. Nevertheless, to

the best knowledge of the authors, a unified theory, which
covers

(a) all operation strategies (such asMTPC, maximum
current (MC), FW,MTPVormaximum torque per
flux (MTPF)) and

(b) allows for an analytical computation of all respec-
tive optimal reference currents,

(c) while stator resistance andmutual/cross-coupling
inductance (magnetic cross-coupling) are explic-
itly considered,

is not yet available.
Initially, the operation of electric drives was optimised

by seeking an operation close to a unity-power factor,
where the ratio of input and output power (kW/kVA)
implies efficient use of electrical energy (Nakamura,
Kudo, Ishibashi, & Hibino, 1995). However, this does
not necessary imply that the electrical losses within the
adopted machine are minimised (Mademlis, Kioskeridis,
&Margaris, 2004). Accordingly, this drove research to dig
into the intrinsic nonlinear characteristics of SMs. Opti-
misation of torque production at steady state can be clas-
sified into two categories: (i) ‘search control’ (SC) and (ii)
‘lossmodel control’ (LMC). SC, in brief, is considered as a
perturb and observe adaptive strategy, where a change in a
control variable is carried out continuously, while observ-
ing the change in a predefined cost function (i.e. electrical
losses). The optimal control input is selected if electrical
losses are minimised. The SC method does not require
precise knowledge of themachine parameters whilst con-
verging to the optimal operating point that accounts for
core and stator electrical losses (Vaez, John, & Rahman,
1997). Nevertheless, the stability of such a strategy is not
always guaranteed andmust be ensured through an addi-
tional stability network (Colby & Novotny, 1988). On
the other hand, LMC – adopted in this paper – is based
on the development of a mathematical model, which
describes the electromagnetic conversion and the elec-
trical losses of the SM throughout operation. Depend-
ing on such models, one or more control variables are
defined. Such variables could be the load angle (i.e. angle
between the direct axis and the Euclidean norm of the
stator current vector) for PMA-RSMs (Niazi et al., 2007),
stator flux linkage based on the converter duty cycle for
RSMs (Foo & Zhang, 2016) and a binary search algorithm
for IPMSMs (Cavallaro et al., 2005). Clearly, LMC strictly
depends on themachine parameterswhich are sometimes
provided by themanufacturer or can be obtained through
experiments (Bedetti, Calligaro, & Petrella, 2016; Hackl,
Kamper, Kullick, & Mitchell, 2016). Upon defining
such a model for the employed SM, optimal control
strategies are defined which can be classified into four
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regions: MTPC, MC (operation on the current circle),
FW and MTPV or MTPF. MTPC computes the opti-
mal reference stator current vector that could generate the
desired electromagnetic torque while copper losses are
minimised up to a certain speed (Cavallaro et al., 2005;
Cheng & Tesch, 2010; Finken, 2012; Gemassmer, 2015;
Morimoto et al., 1990; Ni et al., 2015; Preindl &
Bolognani, 2015; Schröder, 2009). MC allows to oper-
ate the SMs at its current limit (current circle). FW and
MTPV (orMTPF) formulate the optimisation problemby
searching for the optimal reference currents beyond rated
speed and at saturated stator voltage (Kim et al., 2015;
Preindl & Bolognani, 2013b, 2015; Zhang et al., 2016).
All four operation strategies are pointed out later in more
detail indicating the differences in terms of methodology
and imposed assumptions.

For PMSMs (surface- or interior-mounted PMs),
MTPC was proposed initially by formulating a convex
optimisation problem, where an optimal current vec-
tor with minimum magnitude was computed without
including the drive’s voltage as a constraint (Panaitescu &
Topa, 1998). The same control strategy could be mapped
to PMA-RSM as the difference in models is not dis-
tinct (see Equations (1)−(4) in Section 2.1). Further
enhancement for this MTPC depended on developing
an iron loss model which, when coupled to the con-
ventional MTPC in Panaitescu and Topa (1998), results
in (slightly) better efficiency for high machine speeds.
In Urasaki et al. (2003), the applied MTPC incorpo-
rates a simplified iron loss model based on root-mean-
square calculations (for a constant iron loss resistance).
The employed MTPC in Cavallaro et al. (2005) adopted
an iron loss model represented with a variable resis-
tance at different loading conditions. The highest effi-
ciency enhancement recorded was 3.5% for the PMSM
under test. In Ni et al. (2015), the authors discriminated
between MTPC and their developed maximum torque
per efficiency (MTPE), which is basically MTPC cou-
pled with iron loss and inductancemodels extracted from
finite element analysis (FEA) data that was available for
the employed IPMSM. Even though, solely a 0.2 % effi-
ciency gain was achieved, the availability of the neces-
sary FEA data is not guaranteed for every IPMSM. Also,
the polynomial fitting of the inductance models with
the direct and quadrature (d, q)-stator current compo-
nents was not discussed in detail. In Panaitescu and Topa
(1998), Cavallaro et al. (2005), Preindl and Bolognani
(2013a), Urasaki et al. (2003), Niazi et al. (2007) and
Lemmens et al. (2015), the MTPC optimisation prob-
lems did not treat both the optimisation problem beyond
rated speed and the effect of magnetic cross-coupling
between the (d, q)-axes. Also, the optimal solutions were
computed numerically, convergence and/or stability of

the algorithm is not entirely guaranteed. In Schoonhoven
and Uddin (2016), the ability to obtain the optimal
MTPC currents was demonstrated through Lyapunov
stability analysis (assuming negligible magnetic cross-
coupling). In Jung et al. (2013), an analytical expres-
sion for the optimal currents was obtained, while stator
resistance and cross-coupling inductance were neglected
in the voltage constraint and torque generation, respec-
tively. For PMA-RSM, an additional fifth harmonicmodel
was incorporated along with the fundamental (d, q)-
model up to rated speed, which led to lower stator cur-
rents and improved performance (Niazi et al., 2007). An
explicit expression for the optimal MTPC currents of
RSMs was described in Ahn et al. (2007) neglecting the
effect of magnetic cross-coupling in the electromagnetic
torque.

The angular velocity is directly related to the applied
stator voltage. In case the machine is required to rotate
beyond nominal speed, the machine is said to be driven
in FW mode. At such operating mode, the applied sta-
tor voltage saturates to its maximum value, while the (d,
q)-current components are manipulated to account for
the demanded torque (if feasible) coming from, for exam-
ple, an outer speed control loop. The FW region is sub-
divided into two regimes, known as constant power and
reduced power regimes. For PMSM and PMA-RSM, the
admissible over-speed value as well as the power regimes
(i.e. constant or reduced power regimes) are determined
(Preindl & Bolognani, 2015; Zhang et al., 2016), depend-
ing on the drive capability of injecting the opposing char-
acteristic current (i.e. the current to fully demagnetise the
PM; Zhang et al., 2016) and themaximum speed from the
mechanical point of view. As illustrated in Zhang et al.
(2016), Lemmens et al. (2015) and Preindl and Bolognani
(2013b, 2015), the applied voltage constraint at different
speeds is represented in the (d, q)-plane by an ellipse,
which determines whether or not the demanded torque
is feasible. Depending on the actual speed and the cor-
responding feasible torque, the operating point of the
machine is determined. Even though a robust FW opti-
mal control strategy was presented in Schoonhoven and
Uddin (2016), the effects of magnetic cross-coupling and
stator resistance were neglected. In Tursini et al. (2010),
the presented FW strategy takes into account the stator
resistance with line approximation of the voltage limits
at different speeds. The method calculates the approx-
imated optimal currents with acceptable accuracy and
reduced computational requirements as the operating
point approaches the rated current limits. Otherwise, a
significant error exists between the actual and approxi-
mated optimal currents (Horlbeck & Hackl, 2016). The
discussed literature, so far, calculated the FW optimum
currents numerically. In Jung et al. (2013), analytical FW
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optimum currents were obtained for IPMSM, while the
effects of the cross-coupling inductance were neglected.
As for RSMs, the effect of considering both the stator
resistance and core saturation on acquiring the corre-
sponding optimal currents was depicted analytically in
Ahn et al. (2007). However, the provided analytical solu-
tion was derived assuming that the machine operates on
the MTPV current loci (i.e. current loci of the maximum
admissible torque when the machine is driven beyond
ωMTPV
k,cut-in as explained in Section 4.4), which is not neces-

sarily the practical case. Also, omitting the cross-coupling
inductance shifts the locus of the voltage ellipse. It is
worth to mention that the MTPF strategy minimises the
stator iron losses at higher speeds based on the fact that
iron losses become more significant at higher electrical
angular velocities (Ni et al., 2015; Ueda, Morimoto, Inoue
& Sanada, 2014). However, it is proven later in this paper
thatMTPF is a special case ofMTPV.Also from a physical
point of view, the anisotropic SM under study will always
weaken the PM flux linkage (for PMSM, PMA-RSM or
PME-RSM) or the stator flux linkage (for RSM), since all
optimisation strategies inject a counteracting flux link-
age by negative direct-axis currents, thus iron losses are
implicitly reduced (Cavallaro et al., 2005). This assump-
tion holds unless the machine is driven into much higher
speeds (Kim et al., 2015).

1.3 Contributions of this paper

As discussed previously, to obtain the optimal currents
corresponding to non-zero direct-axis control (i.e. MTPC
and FW), numerical solutions are usually employed.
Here, a trade-off between feasible convergence rate
and guaranteed convergence should be considered for
the choice of a suitable numerical method. Moreover,
enhancing the outcome of such numerical solutions in
general comes at the expense of tightening the pro-
grammed tolerances which may decrease the speed of the
control algorithm and increase the computational load
on the real-time system. It was explained explicitly in Ni
et al. (2015, Section IV), Ahn et al. (2007, Section 2.2.3)
and Ueda et al. (2014, Section II-B), that acquiring a gen-
eral analytical solution of the optimal currents for MTPV
and MTPF along with considering the stator resistance
and magnetic cross-coupling is or seems not possible and
would introduce a high degree of complexity.

Motivated by the aforementioned challenges and
remaining open questions (e.g. how to consider sta-
tor resistance and cross-coupling inductance in the
whole feedforward torque control problem), the follow-
ing research work has been conducted. The main contri-
butions of this paper are as follows:

(i) The derivation of a unified theory for optimal
feedforward torque control for anisotropic (and
isotropic) SMs which allows to compute the opti-
mal reference currents analytically for all opera-
tion strategies such as MTPC, MC, FW, MTPV
or MTPF incorporating stator resistance and cross-
coupling (mutual) inductance explicitly. To the
best of the authors’ knowledge, analytical solu-
tions including stator resistance and mutual induc-
tance for MTPC, MC, FW, MTPV or MTPF of
anisotropic SMs are scarcely investigated or not
available at all. Moreover, the proposed analytical
solutions offer (a) guaranteed convergence to the
optimal reference currents (compared to numeri-
cal methods), (b) easy and straightforward imple-
mentation, and (c) rapid execution and low com-
putational burden making the proposed analytical
algorithms very suitable even for modest (hence
cheap) processor boards.

(ii) The unified theory is established by (a) the use of
Lagrangian multipliers and (b) an implicit prob-
lem formulation as quadrics (i.e. all trajectories
of the constraints and operation strategies in the
(d, q)-plane–such as current circle, voltage ellipse
and torque hyperbola–are reformulated implicitly
as quadric surfaces).

(iii) It is shown that only for very high speeds or very
small stator resistances, the MTPF solution is an
acceptable approximation of the MTPV solution.
In general, an MTPV algorithm incorporating sta-
tor resistance and mutual inductance yields higher
efficiencies and should be preferably implemented
(see also Eldeeb, Hackl, & Kullick, 2016).

(iv) The negative effects of neglecting stator resistance
and mutual inductance or both on the optimal-
ity of all operation strategies are illustrated, which
show that neglecting these two parameters dur-
ing optimisation will lead to significant devia-
tions between optimal and approximated reference
currents and, hence, to a reduction in achievable
efficiency.

(v) The analytical computation of the transition points
indicating when to switch from one operation
strategy to the other (e.g. from MTPC to FW or
fromMC to MTPV).

(vi) The comparison of numerical and analytical solu-
tions with respect to computation time. The ana-
lytical method is significantly faster.

(vii) The real-time implementation of the proposed
analytical solution for the MTPC problem for a
highly nonlinear RSM. The measurement results
illustrate effectiveness and applicability of the pro-
posed method.
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The remainder of the paper is organised as follows:
Section 2 revisits the dynamic model of anisotropic
synchronous machines (SMs), the operation constraints
(such as current and voltage constraint) and the prob-
lem formulation of optimal feedforward torque control.
Section 3 deals with mathematical preliminaries at steady
state and the implicit reformulation of the optimisa-
tion problems and the machine constraints. This paves
the way for Section 4, where the analytical solutions
for MTPC, MC, FW, MTPV and MTPF are presented.
Section 5 defines the characteristic operating points at
which the switching between the different optimal control
strategies is carried out. Section 6 demonstrates simula-
tion and practical implementation results of the optimal
control strategies explained in Sections 4 and 5. Section 7
concludes the paper by a short summary and an outlook
to future work. To improve readability, the mathematical
derivations of the unified theory are collected and pre-
sented in Appendices A.1–A.4.

2. Problem statement

In this section, the dynamicmodel and the operation con-
straints of the considered SMs and the problem formula-
tion are presented.

2.1 Generic dynamical model of synchronous
machines (SMs)

The model of an anisotropic (a) permanent-magnet syn-
chronous machine (PMSM) or (b) permanent-magnet-
assisted or excited reluctance synchronous machine
(PMA-RSM or PME-RSM, resp. Niazi et al., 2007;
Schmidt, 2014) or (c) RSM in the (d, q)-reference frame2

is given by

=:uks (t )︷ ︸︸ ︷(
uds (t )
uqs (t )

)
= Rs

=:iks (t )︷ ︸︸ ︷(
ids (t )
iqs (t )

)

+ ωk(t )

=:J︷ ︸︸ ︷[
0 −1
1 0

] =:ψk
s

(
iks (t )
)

︷ ︸︸ ︷(
ψd

s
(
iks (t )

)
ψ

q
s
(
iks (t )

) )
+ d

dt
ψk

s (i
k
s (t )
)
,

d
dt

ωk(t ) = np
�

(
mm(iks (t )

)− ml(t )
)
,

d
dt

φk(t ) = ωk(t ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1)

with initial values ψk
s (i

k
s (0)) = ψk,0

s , ωk(0) = ω0
m and

φk(0) = φ0
m. The following assumption is imposed on the

flux linkage.

Assumption 2.1: For a (locally) constant inductance
matrix Lks ∈ R

2×2 (e.g. obtained by a linearisation of (1)
at the actual operating point), the (local approximation of
the) flux linkage can be expressed as follows (Hackl, 2015;
Hackl, Kamper, Kullick, & Mitchell, 2015; Niazi et al.,
2007; Schmidt, 2014):

ψk
s
(
iks
) =

[
Lds Lm
Lm Lqs

]
︸ ︷︷ ︸
=:Lks∈R2×2

iks +
(

ψd
pm

ψ
q
pm

)
︸ ︷︷ ︸

=:ψk
pm

where

ψk
pm =

⎧⎪⎨
⎪⎩

(ψpm, 0)�, PMSM and PME-RSM,

(0, −ψpm)�, PMA-RSM, or
(0, 0)�, RSM.

(2)

Then, the machine torque can be computed as follows
(argument t dropped for brevity):

mm
(
iks
) = 3

2
np(iks )

�Jψk
s
(
iks
)

(2)= 3
2
np
[
(iks )

�JLks i
k
s + (iks )

�Jψk
pm
]

(3)

= 3
2
np
[
ψd

pmi
q
s − ψq

pmi
d
s + (Lds − Lqs

)
ids i

q
s

+ Lm
(
(iqs )

2 − (ids )
2)] (4)

(2)= 3
2
np

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ψpmi

q
s + (Lds − Lqs

)
ids i

q
s + Lm

(
(iqs )2 − (ids )2

)]
,

PMSM & PME-RSM,[
ψpmids + (Lds − Lqs

)
ids i

q
s + Lm

(
(iqs )2 − (ids )2

)]
,

PMA-RSM, or[(
Lds − Lqs

)
ids i

q
s + Lm

(
(iqs )2 − (ids )2

)]
,

RSM.

In (1)–(3) or (4), Rs (in �) is the stator resistance,
uks := (uds , u

q
s )

� (in V), iks := (ids , i
q
s )

� (in A) and ψk
s :=

(ψd
s , ψ

q
s )� (in Wb) are stator voltage (e.g. applied by

a voltage source inverter), current and flux linkage vec-
tors in the (d, q)-reference frame, respectively. Note that
ωk = np ωm (in rad/s) and φk = npφm are electrical
angular frequency and angle, whereas ωm and φm are
mechanical angular frequency and angle of the rotor
(with initial values ω0

m and φ0
m), respectively. np is the

pole pair number of the machine and � (in kgm2) is
the (rotor’s) inertia. mm is the electromagnetic machine
torque3 and ml (in Nm) is a (bounded) load torque.
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Figure . Flux linkage map () of an exemplary SM with parame-
ters as in (): (a) ψd

s -component and (b) ψq
s -component of the

stator flux linkage. Due to the non-zero mutual inductance, both
flux linkagemaps are slightly tilted (themap is only shown for the
second quadrant, i.e. ids ≤ 0 and iqs ≥ 0).

The flux linkage ψk
s depends on the symmetric, positive-

definite inductance matrix Lks = (Lks )� > 0 (Hackl, 2015)
with stator inductances Lqs > 0, Lds > 0 (both in H)
and cross-coupling (mutual) inductance4 Lm ∈ R (in
H) and Lds L

q
s − L2m > 0, the stator currents iks and the

permanent-magnet flux linkage ψk
pm = (ψd

pm, ψ
q
pm)�.

Figure 1 illustrates the flux linkage (2) of an anisotropic
IPMSM for some exemplified values of Lqs , Lds , Lm
and ψpm.

Remark 2.1 (Affine flux linkage): Note that Assump-
tion 2.1 implies a constant inductance matrix; this
is in line with most recent publications (even from
2016) which also deal with constant inductances only
(see e.g. Calleja, de Heredia, Gaztanaga, Nieva, & Alda-
soro, 2016; Cavallaro et al., 2005; Lemmens et al., 2015;
Preindl & Bolognani, 2013a; Preindl & Bolognani, 2013b,
2015; Tang, Li, Dusmez, & Akin, 2016, for PMSMs
or Ahn et al., 2007; Foo & Zhang, 2016, for RSMs).
This simplification will not be true in the most gen-
eral case when the flux linkage is a nonlinear func-
tion of the currents (see e.g. Hackl et al., 2016). Never-
theless, in the humble opinion of the authors, the pre-
sented results are of quite some relevance and have not
been discussed in this general framework before: the
results of this paper can be considered as a generalisa-
tion of the results for IPMSM in Jung et al. (2013) by
including resistance Rs and mutual inductance Lm into
the generic optimisation formulation. The simplifying
assumptions which neglect these physical parameters are
overcome. Moreover, the presented results are applica-
ble to any anisotropic SM (e.g. also to PMA-RSMs and
RSMs) and, in Section 6, it is shown by measurement
results that an application to a nonlinear RSM is feasible
(for MTPC).

Remark 2.2 (Inductance ratios and signs of permanent-
magnet flux linkage): For differentmachine designs, the
direct and quadrature inductances take different values
and have different ratios; also the permanent-magnet flux

constant changes its sign (Schmidt, 2014), i.e.

� PMSMs: ψd
pm > 0, ψq

pm = 0 and Lqs ≥ Lqs ⇔ Lds
Lqs

≤ 1
(inverse saliency ratio);

� PME-RSMs: ψd
pm > 0, ψq

pm = 0 and (a) Lqs ≥ Lqs ⇔
Lds
Lqs

≤ 1 (inverse saliency ratio) or (b) Lqs ≤ Lqs ⇔
Lds
Lqs

≥ 1 (normal saliency ratio);
� PMA-RSMs with normal saliency: ψd

pm = 0, ψq
pm <

0 and Lqs ≤ Lqs ⇔ Lds
Lqs

≥ 1 (normal saliency ratio);
and

� RSMs: ψd
pm = ψ

q
pm = 0 and Lqs ≤ Lqs ⇔ Lds

Lqs
≥ 1

(normal saliency ratio).

2.2 Operation constraints

Due to safety reasons (Schröder, 2009, Chapter 16), sta-
tor current and voltage vectors should never exceed
their respective maximalmagnitudes ı̂max > 0 (in A) and
ûmax > 0 (inV; both are amplitudesnotRMSvalues here).
Hence, the following must be ensured by the control sys-
tem for all time:

∀t ≥ 0 s : ‖iks (t )‖2 ≤ ı̂max(t )2 and
‖uks (t )‖2 ≤ ûmax(t )2. (5)

Note that the maximally admissible current ı̂max and volt-
age ûmax might change over time: (a) the current limit is
usually equal to the nominal/rated current of themachine
but can also exceed this nominal value for a short period
in time and (b) the maximally applicable voltage will
change with the DC-link voltage of the inverter. In the
remainder of the paper, the time dependency will not
be explicitly highlighted and the argument (t) will be
dropped.

2.3 Problem formulation

For a given reference torque mm,ref (in N m) (and given
current and voltage limits), the general objective is to
find optimal and analytical solutions of the reference cur-
rents for all operation strategies such as MTPC, MC, FW,
MTPV and MTPF. From a mathematical point of view,
the following optimisation problem

max
iks

− f (iks ) s.t.

{‖uks‖ ≤ ûmax, ‖iks‖ ≤ ı̂max, |mm(iks )| ≤ |mm,ref |
and sign(mm,ref ) = sign(mm(iks )),

(6)
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Figure . Optimal reference current generation for a given refer-
ence torquemm,ref : the computed, optimal reference currents ids,ref
and iqs,ref depend also on maximal current ı̂max, maximal voltage
ûmax and (actual) electrical angular frequencyωk = npωm.

with three inequality constraints and one equality con-
straint must be solved online, where obviously the sign of
reference andmachine torque should coincide. The func-
tion f (iks ) depends on the operation strategy (e.g. f (i

k
s ) =

‖iks‖2 for MTPC; for more details, see Section 4).
The most favourable outcome is an analytical solution

which gives explicitly the reference current vector

iks,ref (mm,ref , ûmax, ı̂max, ωk)

=
(
ids,ref (mm,ref , ûmax, ı̂max, ωk)

iqs,ref (mm,ref , ûmax, ı̂max, ωk)

)
:= argmaxiksmm(iks ) (7)

as functions (see Figure 2) of reference torque mm,ref
(coming from an outer control loop; e.g. the speed con-
trol loop), voltage limit ûmax, current limit ı̂max and elec-
trical angular velocity ωk = npωm. The computed refer-
ence current vector iks,ref can then directly be handed over
to any underlying current controller.

Remark 2.3 (Feasible reference torques and non-
convexity of the machine torque): Note that, due to the
voltage limit (during high-speed operation) or, due to the
current limit, the range of admissible reference torques
is restricted. Hence, not all reference torques mm,ref are
feasible during all operation modes; therefore, the addi-
tional inequality constraint in (6) must be considered.
If the requested reference torque is feasible, the inequal-
ity constraint becomes the equality constraint |mm(iks )| =
|mm,ref | (or simply, mm(iks ) = mm,ref ). Important to note
that the machine torquemm(iks ) ∝ (iks )�JLks i

k
s is not con-

vex, since JLks = [−Lm −Lqs
Lds Lm

] is non-symmetric and indefi-

nite with eigenvalues ±
√
L2m − Lds L

q
s . Hence, maximising

the machine torque is not a viable approach. To account
for that, the general optimisation problem (6) will be
divided into several sub-problems leading to the optimal
operation strategies MTPC, MC, FW, MTPF or MTPV
(see Sections 4 and 5).

3. Mathematical preliminaries

In this section, the steady-state model of the considered
SMs is derived, and the machine torque and all oper-
ation constraints (such as current or voltage limit) are
re-formulated implicitly as quadratic surfaces (quadrics).
This implicit forms will pave the way for the proposed
theory of optimal feedforward torque control with ana-
lytical solution of the reference currents.

3.1 Steady-state operation

In the remainder of this paper, only steady-state operation
is considered which implies that d

dtψ
k
s (i

k
s ) = d

dt i
k
s = 02.

This is justified since the reference torque is changing
much slower than the current dynamics can produce the
actual machine torque. Inserting (2) into (1) and neglect-
ing the time derivative of the current, the steady-state sta-
tor circuit model of an SM in matrix/vector notation is
obtained as follows:

uks = Rsiks + ωkJLks i
k
s + ωkJψk

pm (8)

where J, and Lks andψk
pm are as in (1) and (2), respectively.

3.2 Implicit formulation ofmachine torque and
constraints as quadrics

The steady-state SM model (8) will be the basis for all
upcoming derivations. The trick to obtain and derive
a unified theory for the optimal torque control prob-
lem under current and voltage constraints is the re-
formulation of the general optimisation problem (6)
implicitly by quadrics (or quadric surfaces) which will
allow to invoke the Lagrangian formalism to derive
analytical solutions for all operation strategies (such as
MTPC, MTPV, FW, etc.). In the upcoming subsections,
the implicit forms of torque hyperbola, voltage ellipse
(elliptical area), current circle (circular area) and flux
norm are presented. The explicit forms are also given (as
link to the existing literature) if their expressions are not
too long. Stator resistance Rs � 0 and mutual inductance
Lm � 0 will not be neglected to present the most gen-
eral result within the framework of affine flux linkages as
in (2).

.. Torque hyperbola (constant torque trajectory)
Toderive the implicit formas quadric of the torque hyper-
bola, the following symmetricmatrix, vector and constant
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Figure . Illustration of three different feedforward torque control strategies for torque reference mm,ref > 0 (second quadrant)
and varying electrical angular velocities: (a) MTPC for ωk = ωMC

k,nom ≤ ωk,nom, i.e. MTPC ∩ T(mm,ref ), (b) FW for ωk,nom < ωk =
2ωk,nom < ωMTPV

k,cut−in, i.e. T(mm,ref ) ∩ ∂V(ωk, ûmax) and (c) MTPV for ωk = 3ωk,nom ≥ ωMTPV
k,cut−in (mm,ref is not feasible anymore), i.e.

MTPV(ωk) ∩ ∂V(ωk, ûmax): the three plots show voltage ellipse ( ) ∂V(ωk, ûmax), maximum current circle ( ) ∂I(ı̂max), MTPC
hyperbola ( ) MTPC, torque hyperbola ( ) T(mm,ref ), MTPV hyperbola ( ) MTPV(ωk), MTPF hyperbola ( ) MTPF and

optimal operation point ( ), respectively.

are defined:

T := 3
4
np
(
JLks + Lks J

�) = 3
2
np

⎡
⎣−Lm

Lds −Lqs
2

Lds −Lqs
2 Lm

⎤
⎦ = T�,

t := 3
4
npJψk

pm = 3
2
np

⎛
⎝−ψ

q
pm
2

ψd
pm
2

⎞
⎠

(2)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
2
np
(
0, ψpm

2

)�
, PMSM and PME-RSM,

3
2
np
(

ψpm
2 , 0

)�
, PMA-RSM, or

(0, 0)�, RSM,

τ := τ (mm,ref ) := −mm,ref .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

Moreover, note that (iks )�JLks i
k
s = (iks )�Lks J�i

k
s , hence

3
4
np(iks )

�(JLks + Lks J
�)iks = (iks )

�Tiks . (10)

Now, by combining (9) and (10) with (3), the machine
torque can be written as follows:

mm(iks ) = (iks )
�Tiks + 2t�iks . (11)

For themachine torquemm(iks ) as in (11) and a given con-
stant reference torque mm,ref , the machine torque hyper-
bola can be expressed implicitly as quadric by invoking (9)
as follows:

T(mm,ref )

:= { iks ∈ R
2 ∣∣ (iks )�Tiks + 2t�iks + τ (mm,ref ) = 0

}
.

(12)
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An exemplary torque hyperbola is plotted in Figure 3 (see
black line in Figure 3).

Remark 3.1 (Explicit expression for the torque hyper-
bola): For ids ≤ 0 and mm,ref > 0, the torque hyperbola
can be expressed explicitly (by solving (4) for iqs ), i.e.

T(ids ,mm,ref ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1
3

3ψ
q
pmnpids + 2mm,ref

np
[
ψd

pm + (Lds − Lqs ) ids
] , Lm = 0

− (Lds − Lqs )ids + ψd
pm

2Lm
+

√
M

2 Lm
Lm 
= 0,

(13)

where M := [(Lds − Lqs )2 + 4L2m] (ids )2 + 2ψd
pm(Lds −

Lqs ) ids + 4 Lm(ids ψ
q
pm + 2mm,ref

3p ) + (ψd
pm)2. Clearly, (13)

holds for all ids 
= ψpm/(Lds − Lqs ). Note that the explicit
expression in (13) relies on a case study for the mutual
inductance (and the signs of current ids and reference
torque mm,ref ). The implicit form (12) holds in general
and can easily be plotted (e.g. by using the command
ezplot in Matlab).

.. Voltage elliptical area (reformulation of the
voltage constraint in ())
Recall that J�J = I2, α� = α ∈ R (the transpose of a
scalar is the scalar itself), (MN)� = N�M� (for matri-
ces of appropriate size) and (Lks )� = Lks > 0.With that in
mind, inserting (8) into (5) and squaring the result yield

û2max
(5)≥ ‖uks‖2 = (uks )

�uks = (uds )
2 + (uqs )

2

(8)≥ R2
s (i

k
s )

�I2iks + Rsωk(iks )
�JLks i

k
s

+ Rsωk(iks )
�Jψk

pm + ω2
k(i

k
s )

� (Lks )
�J�JLks︸ ︷︷ ︸

=(Lks )2

iks

+ Rsωk(iks )
�Lks J

�iks + ω2
k(i

k
s )

�(Lks )
�J�Jψk

pm

+ Rsωk(ψ
k
pm)�J�iks + ω2

k(ψ
k
pm)�J�JLks i

k
s

+ ω2
k (ψk

pm)�J�Jψk
pm︸ ︷︷ ︸

=‖ψk
pm‖2=ψ2

pm

. (14)

To find a more compact representation, the goal is to
rewrite (14) as a quadric. Therefore, in (14), terms of the
form (iks )��iks and ��iks (where � is either a matrix or
a vector) are collected. Then, by defining the following

matrix, vector and scalar

V (ωk) :=
[

v11(ωk), v12(ωk)

v12(ωk), v22(ωk)

]
= R2

s I2 + Rsωk
(
JLks + Lks J�

)
+ ω2

k(L
k
s )

2 = V (ωk)
�

=

⎡
⎢⎢⎣
R2
s − 2ωkRsLm + ω2

k[(L
d
s )

2 + L2m],
ωkRs(Lds − Lqs ) + ω2

kLm(Lds + Lqs )
ωkRs(Lds − Lqs ) + ω2

kLm(Lds + Lqs ),
R2
s + 2ωkRsLm + ω2

k[(L
q
s )

2 + L2m]

⎤
⎥⎥⎦ ,

v(ωk)
� :=

(
v1(ωk)

v2(ωk)

)
= ωk (ψk

pm)�
(
ωkLks + RsJ�

)

(2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ω2
kL

d
s ψpm

ωkψpm(Rs + ωkLm)

)�
,

PMSM and PME-RSM,(
−ωkψpm(Rs − ωkLm)

ω2
kL

q
sψpm

)�
,

PMA-RSM, or
(0, 0),

RSM
ν(ωk) := ν(ωk, ûmax) := ω2

k (ψk
pm)�J�Jψk

pm − û2max

(2)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ω2
k ψ2

pm − û2max,

PMSM, PME-RSM or PMA-RSM,

−û2max,

RSM,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

the voltage constraint in (14) (or in (5)) can be expressed
as follows:

‖uks‖2 − û2max
(14),(15)= (iks )

�V (ωk) iks + 2 v(ωk)
�iks

+ ν(ωk, ûmax) ≤ 0.

Finally, the voltage constraint (14) can be written implic-
itly as quadric surface defined by

V(ωk, ûmax) :=
{
iks ∈ R

2 ∣∣ (iks )�V (ωk) iks
+ 2 v(ωk)

�iks + ν(ωk, ûmax) ≤ 0
}
,

(16)

which describes the voltage elliptical area. The voltage
ellipse is given by

∂V(ωk, ûmax)

:= { iks ∈ R
2 ∣∣ (iks )

�V (ωk) iks + 2 v(ωk)
�iks + ν(ωk, ûmax)︸ ︷︷ ︸

=:Q∂V(iks ,ωk,ûmax )

= 0
}
,

(17)

and describes the boundary of the elliptical area (16) (see
green line ( ) in Figure 3). Since V (ωk), v(ωk) and
ν(ωk, ûmax) explicitly depend on the electrical angular
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velocity ωk, the quadric Q∂V(iks , ωk, ûmax) of the voltage
ellipse clearly depends on currents iks = (ids , i

q
s )

�, angular
velocityωk and voltage limit ûmax, and hence will move in
the current locus for varying angular velocities.
Remark 3.2 (Symmetry of expression for the torque
hyperbola): V (ωk)): Note that the matrix V (ωk) =
V (ωk)

� ∈ R
2×2 is indeed symmetric for all ωk ∈ R,

since all its sub-matrices are symmetric, respec-
tively, i.e. (RsI2)� = RsI2, (JLks + Lks J�)� = (JLks )� +
(Lks J�)� = Lks J� + JLks = [ −2Lm Lds − Lqs

Lds − Lqs 2Lm
] and ((Lks )2)� =

((Lks )�Lks )� = (Lks )�Lks = (Lks )2 = [ (Lds )2 + L2m Lm(Lds + Lqs )
Lm(Lds + Lqs ) (Lqs )2 + L2m

].

.. Current circular area (reformulation of the
current constraint in ())
The current constraint in (5) can also be expressed
implicitly as quadric as follows:

I(ı̂max) :=
{
iks ∈ R

2 ∣∣ (iks )�I2iks − ı̂2max ≤ 0
}

(18)

which describes the admissible MC circular area: the
magnitude of the stator current vector must not exceed
the current limit ı̂max. The MC circle (see orange line
( ) in Figure 3), i.e. the boundary of (18), is given by

∂I(ı̂max) :=
{
iks ∈ R

2 ∣∣ (iks )�I2iks − ı̂2max = 0
}
. (19)

Remark 3.3 (Explicit expression for the MC cir-
cle): The current circle is given by iqs = ±√ı̂2max − (ids )2.

.. Norm of the flux linkage
To operate the machine in MTPF mode, the squared
norm of the flux linkage is minimised. The flux norm can
also be expressed as quadric as follows:

‖ψk
pm‖2 (2)= (Lks i

k
s + ψk

pm)�(Lks i
k
s + ψk

pm)

=: (iks )
�Fiks + 2 f iks + φ, (20)

where

F := (Lks )2 =
[

(Lds )2 + L2m Lm(Lds + Lqs )
Lm(Lds + Lqs ) (Lqs )2 + L2m

]
= F�,

f := Lksψ
k
pm

(2)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψpm(Lds , Lm)�, PMSM and
PME-RSM,

ψpm(Lm, Lqs )�, PMA-RSM, or
(0, 0)�, RSM,

φ := (ψk
pm)�ψk

pm = ‖ψk
pm‖2

(2)=
{

ψ2
pm, PMSM, PME-RSM and PMA-RSM,

0, RSM,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)

are the correspondingmatrix, vector and scalar of the flux
linkage quadric.

4. Operation strategies

In this section, the operation strategies MTPC, MC, FW,
MTPV and MTPF are discussed in more detail, and
the analytical solutions for the respective reference cur-
rents are presented. Finally, the operation strategies are
explained based on the visualisation of the current loci
(see Figure 3). The significant impact of neglecting stator
resistance and mutual inductance on the efficiency of the
machine is discussed and illustrated (see Figure 4).

4.1 Maximum torque per current (MTPC) hyperbola
(considering L m)

For low speeds, the voltage constraint in (5) is not crit-
ical. The current constraint in (5) and the minimisation
of (copper) losses dominate the operation of the machine
which requires the use of the MTPC strategy (or mostly
called MTPA (Schröder, 2009, Section 16.7.1) or (Caval-
laro et al., 2005; Kim et al., 2015, Preindl & Bolognani,
2015)). The MTPC optimisation problem is formulated
as follows:

max
iks∈S

−‖iks‖2 s.t. mm(iks ) = (iks )
�Tiks + 2t�(iks )

!= mm,ref (
(9)= −τ (mm,ref )) (22)

with S := V(ωk, ûmax) ∩ I(ı̂max). The admissible solu-
tion set S is the intersection of voltage elliptical area
V(ωk, ûmax) and current circular area I(ı̂max). Its solu-
tion, the MTPC hyperbola (see blue line ( ) in
Figure 3), is given by the quadric

MTPC := { iks ∈ R
2 ∣∣ (iks )�MC iks + 2m�

C i
k
s = 0

}
(23)

where

MC := 3
2np

[
Lds −Lqs

2 Lm
Lm, − Lds −Lqs

2

]
= M�

C and

mC := 3
2np

(
ψd
pm
4

ψ
q
pm
4

)

(2)=

⎧⎪⎨
⎪⎩

3
2np (ψpm, 0)�, PMSM and PME-RSM
3
2np (0, ψpm)�, PMA-RSM, or
(0, 0)�, RSM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(24)

The derivation of the implicit form (23) is presented in
AppendixA.2.Note that the presented derivation can also
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Figure . Illustration of the impact of neglecting stator resistance (dashed line: Rs = ), mutual inductance (dash–dotted: Lm =
) or both (dotted: Rs = Lm = )) on the different feedforward torque control strategies (a) MTPC, (b) FW and (c) MTPV from
Figure : the three plots show voltage ellipse ( ) ∂V(ωk, ûmax), ( ) ∂V(ωk, ûmax; Rs = 0), ( ) ∂V(ωk, ûmax; Lm = 0),
( ) ∂V(ωk, ûmax; Rs = Lm = 0), maximum current circle ( ) ∂I(ı̂max), MTPC hyperbola ( ) MTPC, ( ) MTPC(Lm = 0),
torque hyperbola ( ) T(mm,ref ), ( ) T(mm,ref; Lm = 0), MTPV hyperbola ( ) MTPV(ωk), ( ) MTPV(ωk; Lm = 0), MTPF

hyperbola ( )MTPF, ( )MTPF(Lm = 0) and optimal operation point ( ), respectively.

be applied to obtain the implicit forms of the other oper-
ation strategies MC, FW, MTPV or MTPF.
Remark 4.1 (Explicit expression for the MTPC
hyperbola): Depending on the parameters Lds , Lqs
and Lm, the hyperbola can be expressed explicitly as
follows:

MTPC(ids ) =
⎧⎨
⎩

2Lmids +
ψ
q
pm
2 ±√

M
Lds −Lqs

for Lds 
= Lqs
−(ids = 0), for Lds = Lqs ,

(25)

with M:=[(Lds − Lqs )2 + 4L2m](ids )2 + (2ψq
pmLm + (Lds −

Lqs )ψd
pm)ids + (ψ

q
pm)2

4 . Obviously, (25) holds only for ids ≤ 0
and Lqs ≥ Lds . For ids > 0 and/or Lds = Lqs , another explicit
expression has to be found. The implicit form (23)

with (24) holds in general (a significant advantage obvi-
ating the need of case studies). The mathematical deriva-
tion of the explicit expression of a general quadric is
explained in Appendix A.3.

Remark 4.2 (MTPC versus MTPA): In most publica-
tions, the MTPC strategy is called MTPA. From a physi-
cal point of view, the use of physical quantities in the ter-
minology (like torque and current) seems more appro-
priate than a mixture of quantity and unit (like torque
and Ampere). Therefore, in this paper, the terminol-
ogy MTPC will be adopted instead of MTPA (follow-
ing the publications, Horlbeck & Hackl, 2016; Huber,
Peters, & Böcker, 2015; Peters, Wallscheid, & Böcker,
2015).
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4.2 Maximum current (MC)

To operate the machine at its current limit for increas-
ing angular velocities, the MC strategy is used where the
maximally feasible torque should be produced, i.e.

max
iks∈S

sign(mm,ref )mm(iks ) with

S := ∂I(ı̂max) ∩ V(ωk, ûmax).

The optimal reference currents are obtained as the inter-
section points of the current circle ∂I(ı̂max) and the volt-
age ellipse ∂V(ωk, ûmax). Hence, the reference current
vectors are element of the following set:

MC(ωk, ûmax, ı̂max)

:= ∂I(ı̂max) ∩ ∂V(ωk, ûmax)

=
{
iks ∈ R

2
∣∣∣ (iks )

�I2 iks − ı̂2max = 0 ∧
(iks )

�V (ωk)iks + 2 v(ωk)
�iks + ν(ωk, ûmax)

}
(26)

with V , v and ν as in (15). An algorithm to com-
pute these intersection points analytically is presented in
Appendix A.4.

4.3 Field weakening (FW)

For a feasible torque below rated machine torque and
angular velocities higher than a certain feasible MTPC
velocity, the machine is operated in FW. The optimi-
sation problem for FW is identical to the optimisation
problem for MTPC as in (22). Due to a smaller feasi-
ble set S := V(ωk, ûmax) ∩ I(ı̂max), the optimal reference
currents are obtained by the intersection of the (feasi-
ble) torque hyperbola T(mm,ref ) and the voltage ellipse
∂V(ωk, ûmax), and hence the reference current vector is
the element of the following set:

FW(mm,ref , ωk, ûmax)

:= T(mm,ref ) ∩ ∂V(ωk, ûmax)

=
{
iks ∈ R

2
∣∣∣ (iks )

�T iks + 2 t�iks + τ (mm,ref ) = 0 ∧
(iks )

�V (ωk)iks + 2 v(ωk)
�iks + ν(ωk, ûmax) = 0

}
(27)

with T , t and τ (mm,ref ) as in (9) and V (ωk), v(ωk) and
ν(ωk, ûmax) as in (15). Again, the computation of the
intersection points is based on the analytical algorithm
presented in Appendix A.4.

4.4 Maximum torque per voltage (MTPV) hyperbola
(considering R s and L m)

For high speeds and for torques higher than or equal
to the speed-dependent MTPV cut-in torque mMTPV

m,cut-in
(for details, see Section 5.1), the voltage constraint in (5)
is critical and dominates the operation of the machine.
Now, the operation strategy is MTPV. The corresponding
MPTV optimisation problem is formulated as follows:

max
iks∈S

−‖uks (iks )‖2

s.t. mm(iks ) = (iks )
�Tiks + 2t�(iks )

!= mm,ref ,

(28)

with S = V(ωk, ûmax) ∩ I(ı̂max). Its solution, the MTPV
hyperbola (see light blue line ( ) in Figure 3), is param-
eterised by the electrical angular velocityωk and is implic-
itly given by the quadric

MTPV(ωk)

:= { iks ∈ R
2 ∣∣ (iks )�MV(ωk) iks + 2mV(ωk)

�iks
+ μV(ωk) = 0

}
(29)

where

MV(ωk)

:=
[
m11

V (ωk), m12
V (ωk)

m12
V (ωk), m22

V (ωk)

]
= MV(ωk)

� =

= 3
2
np

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω2
kL

2
m(Lds + Lqs )

+Lds − Lqs
2

(
R2
s

+ω2
k

[
(Lds )2 + L2m

]) ,

Lm
2

(
2R2

s + ω2
k
[
(Lds )

2

+(Lqs )2 + 2L2m
])

Lm
2

(
2R2

s + ω2
k
[
(Lds )

2

+(Lqs )2 + 2L2m
]) ,

ω2
kL

2
m(Lds + Lqs )

−Lds − Lqs
2

(
R2
s

+ω2
k

[
(Lqs )2 + L2m)

])

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

mV(ωk)

:=
(
m1

V(ωk)

m2
V(ωk)

)

= 3
2
np

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
R2
s + ω2

k

[
2(Lds )2 − LqsLds + 3L2m

])ψd
pm

4
+ω2

kLm(Lds + Lqs )
ψ

q
pm

2

ω2
kLm(Lds + Lqs )

ψd
pm

2
+
(
R2
s + ω2

k
[
2(Lds )

2

−LqsLds + 3L2m
])ψ

q
pm

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

μV(ωk)

:= 3
4
npω2

k

[
Lds (ψ

d
pm)2 + 2Lmψd

pmψq
pm + Lqs (ψ

q
pm)2

]

(2)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
3
4
npω2

kL
d
s ψ

2
pm, PMSM and PME-RSM,

3
4
npω2

kL
q
sψ

2
pm, PMA-RSM, or

0, RSM.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)
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Obviously, sinceMV(ωk),mV(ωk) andμV(ωk) alldepend
on the angular velocity ωk, the MTPV hyperbola is mov-
ing in the (ids , i

q
s )-plane (see thick light blue lines ( ) in

Figure 3(a–c)).

Remark 4.3 (Explicit expression for the MTPV hyper-
bola): The explicit solution of the MTPV hyperbola is
given by (see Appendix A.3)

MTPV(ids , ωk)

= −m12
V ids + m2

V

m22
V

±

√(
m12

V ids + m2
V

)2
− m22

V

(
m11

V (ids )2 + 2m1
V ids + μV

)
m22

V
,

(31)

where m11
V = m11

V (ωk), m12
V = m12

V (ωk), m22
V = m22

V (ωk),
m1

V = m1
V(ωk), m2

V = m2
V(ωk) and μV = μV(ωk) are as

in (30). Note that m22
V (0) = − Lds −Lqs

2 R2
s 
= 0, and hence is

non-zero for all ωk and all Lds 
= Lqs .

Remark 4.4 (MTPV hyperbola without stator resis-
tance): Note that the MTPV hyperbola without sta-
tor resistance can be obtained from (30) by setting Rs
= 0. This was already shown in Horlbeck and Hackl
(2016).

4.5 Maximum torque per flux (MTPF) hyperbola
(considering L m)

For high speeds, an alternative to the MTPV strategy
is the MTPF strategy. Nevertheless, it yields a reference
current vector with larger magnitude than that obtained
from MTPV. Hence, the MTPV strategy should be pre-
ferred (see also Remark 4.6). The MTPF optimisation
problem can be formulated as follows:

max
iks∈S

−‖ψk
s (i

k
s )‖2

s.t. mm(iks ) = (iks )
�Tiks + 2t�(iks )

!= mm,ref (32)

with S := V(ωk, ûmax) ∩ I(ı̂max). Its solution, the MTPF
hyperbola (see gray line ( ) in Figure 3), is implicitly
given by the quadric

MTPF := { iks ∈ R
2 ∣∣ (iks )�MF iks + 2m�

F i
k
s + μF = 0

}
,

(33)

which doesnotdependon the angular velocityωk (in con-
trast to the MTPV hyperbola (29)), since

MF :=
[
m11

F , m12
F

m12
F , m22

F

]
= M�

F =

= 3
2np

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Lds −Lqs
2

(
(Lds )2 + L2m

)
+L2m

(
Lds + Lqs

) , Lm
2

(
(Lds )2

+(Lqs )2 + 2L2m
)

Lm
2

(
(Lds )2

+(Lqs )2 + 2L2m
)
,

− Lds −Lqs
2

(
(Lqs )2 + L2m

)
+L2m

(
Lds + Lqs

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

mF :=
(
m1

F
m2

F

)

= 3
2np

⎛
⎜⎜⎜⎜⎜⎝

(
2(Lds )2 − Lds L

q
s + 3L2m

)
ψd
pm
4

+Lm(Lds + Lqs )
ψ

q
pm
2

Lm(Lds + Lqs )
ψd
pm
2

+
(
2(Lqs )2 − Lds L

q
s + 3L2m

)
ψ

q
pm
4

⎞
⎟⎟⎟⎟⎟⎠ and

μF := 3
4np
[
Lds (ψd

pm)2 + 2Lmψd
pmψ

q
pm + Lqs (ψ

q
pm)2

]

(2)=

⎧⎪⎨
⎪⎩

3
4npL

d
s (ψpm)2, PMSM and PME-RSM,

3
4npL

q
s (ψpm)2, for PMA-RSM,

0, RSM,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(34)

do not depend on the electrical angular velocity ωk,
respectively.

Remark 4.5 (Explicit expression for the MTPF hyper-
bola): The explicit solution of the MTPF hyperbola is
given by (see again Appendix A.3)

MTPF(ids )

= −m12
F ids + m2

F

m22
F

±

√(
m12

F ids + m2
F

)2
− m22

F

(
m11

F (ids )2 + 2m1
F ids + μF

)
m22

F
,

(35)

where m11
F , m12

F , m22
F , m1

F, m
2
F and μF are as in (34). Note

that m22
F = 3

2np[− Lds −Lqs
2 ((Lqs )2 + L2m) + L2m(Lds + Lqs )] 
=

0.
Remark 4.6 (Convergence of the MTPV hyperbola to
the MTPF hyperbola): For very large electrical angular
velocities, i.e. |ωk| � 1, or very small stator resistances,
i.e.Rs � 1�, theMTPVhyperbola converges to the shape
of the MTPF hyperbola, since, either for ωk → � or for
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Table . Analytical solutions of the optimal current reference vectors for all operation
strategies.

Strategy Current reference vector Algorithm used

MTPC ik,MTPC
s,ref (λ
)

(A14)
:= −[λ
 T − I2

]−1
λ
 t See Appendix A.

or ik,MTPC
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d See Appendix A.
(case (ii) forMTPC ∩ T(mm,ref ))

for RSM ik,MTPC
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d + xs See Appendix A.
(case (iii) forMTPC ∩ T(mm,ref ))

MC ik,MC
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d See Appendix A.
(case (i) for ∂I(ı̂max) ∩ ∂V(ωk, ûmax))

for RSM ik,MC
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d + xs See Appendix A.
(case (iii) for ∂I(ı̂max) ∩ ∂V(ωk, ûmax))

FW ik,FWs,ref (γ 
)
(A32)
:= −2

[
D − γ 
J

]−1d See Appendix A.
(case (i) for ∂T(mm,ref ) ∩ ∂V(ωk, ûmax))

for RSM ik,FWs,ref (γ 
)
(A32)
:= −2

[
D − γ 
J

]−1d + xs See Appendix A.
(case (iii) for ∂T(mm,ref ) ∩ ∂V(ωk, ûmax))

MTPF ik,MTPF
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d See Appendix A.
(case (i) forMTPF ∩ ∂V(ωk, ûmax))

for RSM ik,MTPF
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d + xs See Appendix A.
(case (iii) forMTPF ∩ ∂V(ωk, ûmax))

MTPV ik,MTPV
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d See Appendix A.
(case (i) forMTPV(ωk) ∩ ∂V(ωk, ûmax))

for RSM ik,MTPV
s,ref (γ 
)

(A32)
:= −2

[
D − γ 
J

]−1d + xs See Appendix A.
(case (iii) forMTPV(ωk) ∩ ∂V(ωk, ûmax))

Rs = 0, the following holds:

(iks )
�MF iks + 2m�

F i
k
s + μF = 0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

limωk→∞(iks )�
MV(ωk )

ω2
k

iks
+2 mV(ωk )

�
ω2
k

iks + μV(ωk )

ω2
k

, Rs 
= 0

(iks )�
MV(ωk )

ω2
k

iks + 2 mV(ωk )
�

ω2
k

iks
+μV(ωk )

ω2
k

, Rs = 0.

,

Concluding, only for very large speeds or very small val-
ues of the stator resistance, both strategies are similar. In
general, MTPF and MTPV hyperbola are different solu-
tions to different optimisation problems and give dif-
ferent optimal reference currents (see Figure 3(c): the
MTPVhyperbola is approaching theMTPFhyperbola for
increasing speeds; but the hyperbolas do not coincide).

4.6 Analytical solutions of the optimal reference
current vectors forMTPC,MC, FW,MTPV andMTPF

As soon as the implicit expressions (quadrics)

(i) for the constraints (i.e. voltage ellipse V(ûmax, ωk),
current circle I(ı̂max), and torque hyperbola
T(mm,ref )) and

(ii) for the operation strategies MTPC, MTPV, and
MTPF (i.e.MTPC,MTPV(ωk) andMTPFhyper-
bola, respectively)

are derived, the optimal reference currents iks,ref = ik,Xs,ref
for each operation strategy X � {MTPC, MC, FW,
MTPV, MTPF} are obtained by intersecting the respec-
tive quadrics (following the general approach presented
in Appendix A.4).

In Table 1, for each operation strategy, the analyti-
cal expression for the optimal current reference vector
and the used computation method (algorithm) are listed
in compact form. In all cases, λ� and γ � are the opti-
mal Lagrangian multipliers which represent one of the
(real) roots of the polynomial (A9) and (A30), respec-
tively. The four roots can be computed analytically by
the algorithm presented in Appendix A.1.3 (Euler’s solu-
tion; Rees, 1922).

Remark 4.7 (Alternative computation of optimal ref-
erence currents for MTPC): Note that, alternatively,
by using the algorithm discussed in Appendix A.4, the
optimal current reference vectors for MTPC can also
be obtained by computing the intersection points of
torque hyperbola (12) andMTPChyperbola (23) (see also
Table 1).
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Remark 4.8 (Optimal reference currents for
RSMs): The analytical solutions for RSMs can be
computed in a similar way as shown in Table 1; how-
ever, for RSMs, all quadrics simplify due to the missing
permanent magnet, i.e. ψd

pm = ψ
q
pm = 0. The vec-

tors t = v(ωk) = f = mC = mV(ωk) = mF = 02 and
scalars φ = μV(ωk) = μF = 0 of torque hyperbola (12),
voltage ellipse (17), flux norm (20), MTPC hyper-
bola (23), MTPV hyperbola (29) and MTPF hyper-
bola (33) become zero (see also (9), (15), (21), (24), (30)
and (34)), respectively. Therefore, instead of applying
case (i) of Appendix A.4, case (iii) of Appendix A.4 must
be considered for the computation of the intersection
points of the respective quadrics (see also Table 1).

4.7 Graphical illustration

In Figure 3, for a small 400W IPMSMwith the following
parameters:

Rs = 20�, Lds = 6 · 10−2 H,

Lqs = 8 · 10−2 H, Lm = 0.5 · 10−3 H,

ψk
pm = (ψpm, 0)� = (0.23Wb, 0)� and np = 3,

⎫⎬
⎭
(36)

three different optimal feedforward torque control strate-
gies are illustrated for the positive reference torque
mm,ref = 3.35Nm, the voltage limit ûmax = 600V and
the current limit ı̂max = 5A. The illustrated optimal oper-
ation strategies are MTPC in Figure 3(a), FW in Figure
3(b) and MTPV in Figure 3(c). The respective optimal
operation point, with its (optimal) reference current vec-
tor iks,ref = (ids,ref , i

q
s,ref )

�, is marked by and corre-
sponds to the intersection of (a) MTPC ∩ T(mm,ref ) for
MTPC in Figure 3(a), (b) ∂V(ωk, ûmax) ∩ T(mm,ref ) for
FW in Figure 3(b), and (c) MTPV ∩ ∂V(ωk, ûmax) for
MTPV in Figure 3(c).

For increasing electrical angular velocities ωk ∈
{1, 2, 3}ωk,nom (where ωk,nom is the nominal electri-
cal angular velocity, see also Section 5.1), the MTPV
hyperbola is approaching the MTPF hyperbola (recall
Remark 4.6) and the voltage ellipse is shrinking; whereas
the current circle, MTPC hyperbola, torque hyperbola
and MTPF hyperbola are independent of the angular
velocity and hence do not change in the three plots.
The blue square represents the intersection point of the
MTPC hyperbola with the current circle and gives the
nominal current vector iks,nom producing the nominal
torque mm,nom(iks,nom). The orange square highlights
the intersection of current circle and torque hyperbola
(in the second quadrant) and represents the maximally

feasible current and maximally feasible torque for higher
angular velocities.

Figure 4(a–c) illustrates the impact of neglecting (i)
stator resistance (i.e. Rs = 0: dashed line), (ii) mutual
inductance (i.e. Lm = 0: dash–dotted line) or (iii) both
(i.e. Rs = Lm = 0: dotted line) on the shape of MTPC,
MTPV, MTPF, and torque hyperbolas and the voltage
ellipse. The feedforward torque control strategies and
optimal operation points (marked by ) are identical to
those shown in Figure 3. It is easy to see that neglecting
stator resistance, mutual inductance or both would lead
to completely different (and wrong) intersection points,
and hence not optimal operation points with reduced effi-
ciency. For example, the impact of neglecting stator resis-
tance, mutual inductance or both on the shape, size and
orientation of the voltage ellipse is obvious. Concluding,
for optimal operation of an SM, both parametersmust not
be neglected.

In Figures 3 and 4, the intersection points of (i) current
circle andMTPChyperbola, (ii) current circle andMTPV
hyperbola, (iii) current circle and voltage ellipse, and (iv)
torque and MTPC hyperbola are highlighted by the fol-
lowing coloured squares (i) , (ii) , (iii) and (iv) ,
respectively. These intersection points will be crucial for
the operation management.

5. Operationmanagement (see Figure 5)

Depending on the electrical angular velocity ωk = npωm,
reference torque mm,ref , maximal current ı̂max and volt-
age ûmax (and the machine parameters), different oper-
ation strategies must be selected online. The flowchart
depicted in Figure 5(a) illustrates the procedure to deter-
mine the optimal reference current vector iks,ref regard-
ing the defined control objectives such as MTPC, MC,
FW and MTPV. Figure 5(b,c) show the different opera-
tion strategies in the machine map (torque over speed)
and in the current locus, respectively. The overall goal is
to produce the reference torque with the minimum cur-
rent magnitude to increase the machine efficiency. How-
ever, if the reference torque is not feasible (due to physi-
cal constraints), a deviation from the reference torque is
allowed in the sense that themaximally available (feasible)
torque is produced in the electrical machine. This allows
to operate the machine over the whole speed range at the
cost of efficiency but beyond nominal speed.

5.1 Operationmanagement parameters

Before the operation management will be explained in
more detail in Section 5.2, the following five crucial
operation management parameters (see Figure 5) are
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(a)

(b) (c)

Figure . Illustration of operation management: (a) Flow chart illustrating the decision tree for the selection of the optimal operation
strategy, (b) machine map with threshold speed ωMTPC

k,feas(mm,ref ) (see thick dashed line) for ωk = ωMTPV
k,cut-in and mm,ref ≤ mFW

m,feas, and
(c) current locus for ωk = ωMTPV

k,cut-in andmm,ref ≤ mFW
m,feas.

introduced which allow to select the actually optimal
operation strategy online:

� mm,nom = mMC
m,nom(iks,nom): The nominal machine

torque which cannot be exceeded permanently due
to the current limit ı̂max. The nominal torque is
a result of the nominal current vector iks,nom =
ik,MC
s,nom(ı̂max) which represents the intersection point
of current circle and MTPC hyperbola (see blue
square ( ) in Figure 5(c)).

� ωMTPC
k,feas (mm,ref ): Themaximally feasibleMTPC angu-

lar velocity for a given reference torque mm,ref dur-
ing MTPC operation. An operation in MTPCmode
is only feasible below this speed limit. Note that
ωMTPC
k,feas (mm,ref ) is a function of the actually com-

manded reference torquemm,ref , hence its value will
change for varying reference torques. For example,
for smaller reference torques, MTPC is feasible for
higher speeds than for larger reference torques (see
dashed blue line ( ) in Figure 5(b)).
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� mFW
m,feas(ωk): Themaximally feasible FW torque dur-

ing FW operation which varies with the electrical
angular velocityωk. Only for torques below this limit
an operation in FWmode is feasible.

� ωMTPV
k,cut-in = ωMTPV

k,cut-in(ı̂max, ûmax): the constant MTPV
cut-in angular velocity which depends on (constant)
current ı̂max and voltage ûmax limit. For actual angu-
lar velocities above this limit and non-feasible (too
high) torques (see the next item), solely an opera-
tion in MTPV mode is admissible (see Figure 5(b)).

� mMTPV
m,cut-in(ωk): TheMTPV cut-in torquewhich varies

with the actual angular velocity ωk. For speeds
above ωMTPV

k,cut-in and for reference torques higher than
mMTPV

m,cut-in(ωk), the machine must be operated in
MTPV mode.

The parameters mm,nom and ωMTPV
k,cut-in are constant

(if ı̂max and ûmax are constant) and, therefore, can
be computed offline. The remaining three parameters
ωMTPC
k,feas (mm,ref ), mFW

m,feas(ωk) and mMTPV
m,cut-in(ωk) do vary

with the reference torque mm,ref or the angular velocity
ωk and hence are (usually) not constant during operation.
These parameters have to be computed online.

.. Offline computation of the nominal machine
torque mm,nom (based on the current constraint ı̂max)
The nominal (or maximal) machine torque mm,nom =
mMC

m,nom(ı̂max) can be produced for the maximally admis-
sible (nominal) current vector iks,nom on the current cir-
cle during MTPC operation. The nominal MTPC cur-
rent vector iks,nom is obtained at the intersection of
MTPC hyperbola (23) and current circle (19), i.e. iks,nom ∈
MTPC ∩ ∂I(ı̂max). The intersection point(s) ik,MC

s,nom(ı̂max)

can be computed analytically by invoking the algorithm
presented in Appendix A.4 (see also Table 1). The nom-
inal current iks,nom = ik,MC

s,nom(ı̂max) is the intersection point
in the second quadrant of the current loci (see in Figure
5(b) or 5(c)). Inserting iks,nom into the machine torque (3)
yields the nominal torque defined by

mm,nom := mMC
m,nom(ı̂max)

(3):= (iks,nom)�Tiks,nom + 2t�iks,nom

= 3
2
np(iks,nom)�J

(
Lks i

k
s,nom + ψk

pm

)
. (37)

Note that the nominal torque mm,nom can be exceeded
temporarily by increasing ı̂max for a short period of time.
Remark 5.1 (Computation of the nominal electrical
angular velocity ωk,nom): In this paper, the nominal (or
rated) angular velocity ωk,nom is defined as the angular
velocity where the voltage ellipse (see green line ( )
in Figure 5(c)) intersects with the current circle (see
orange line ( )) and the MTPC hyperbola (see blue

line ( )). Rewriting the voltage ellipse (17) as a func-
tion of ωk (considering iks and ûmax as parameters) leads
to the following quadratic polynomial:

Q∂V(iks , ωk, ûmax)
(17)= δ2(iks ) ω2

k + δ1(iks ) ωk

+ δ0(iks , ûmax) = 0 (38)

with coefficients (depending on ids , i
q
s and ûmax)

δ2(iks ) := 2
[
ids (Lmψ

q
pm + Lds ψd

pm)

+ iqs (Lmψd
pm + Lqsψ

q
pm)
]+ ids

[
iqs (LmLds

+ LmL
q
s ) + ids (L2m + (Lds )2)

]
+ iqs

[
ids (LmLds + LmL

q
s ) + iqs (L2m

+ (Lqs )2)
]+ (ψd

pm)2 + (ψ
q
pm)2

δ1(iks ) := iqs
[
2LmRsi

q
s + Rsids (Lds − Lqs )

]
− ids

[
2LmRsids − Rsi

q
s (Lds − Lqs )

]
− 2Rs

(
ids ψ

q
pm − iqsψd

pm
)

δ0(iks , ûmax) := R2
s (ids )2 + R2

s (i
q
s )

2 − û2max.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(39)

Inserting the nominal MTPC current vector iks = iks,nom
into (38) allows to compute the nominal electrical angular
velocityωk,nom and the nominal mechanical angular veloc-
ity ωm,nom = 1

np
ωk,nom as follows:

ωk,nom := npωm,nom := δ1(iks,nom)

2δ2(iks,nom)

×
⎛
⎝1 +

√√√√1 − 4
δ0(iks,nom, ûmax)δ2(iks,nom)

δ1(iks,nom)2

⎞
⎠ .

(40)

.. Online computation (only if necessary) of the
maximally feasible angular velocityωMTPC

k,feas(mm,ref)

duringMTPC operation
For a given reference torque mm,ref (assuming it is
not exceeding the nominal torque), there exists an
intersection point ik,MTPC

s,feas (mm,ref ) (in the second quad-
rant, see black square in Figure 5(c)) of torque
and MTPC hyperbola, i.e. ik,MTPC

s,feas (mm,ref ) ∈ MTPC ∩
T(mm,ref ). The intersection point(s) of the two quadrics
can be computed analytically by using the algorithm pre-
sented in Appendix A.4. Inserting iks = ik,MTPC

s,feas (mm,ref )

into (38) and solving for ωk yields the maximally feasi-
ble MTPC angular velocity (similar to (40)),

ωMTPC
k,feas (mm,ref )

:= δ1
(
ik,MTPC
s,feas (mm,ref )

)
2δ2
(
ik,MTPC
s,feas (mm,ref )

)
×
⎛
⎝1 +

√√√√1 − 4
δ0
(
ik,MTPC
s,feas (mm,ref ), ûmax)δ2(ik,MTPC

s,feas (mm,ref )
)

δ1
(
ik,MTPC
s,feas (mm,ref )

)2
⎞
⎠ .

(41)
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.. Offline computation of the (constant) MTPV
cut-in angular velocityωMTPV

k,cut-in = ωMTPV
k,cut-in(ı̂max, ûmax)

The MTPV cut-in speed ωMTPV
k,cut-in defines the speed

at which the current trajectory diverts from the cur-
rent circle ∂I(ı̂max) and starts moving on the MTPV
hyperbola for maximum torque output. Mathemati-
cally, this point is described by the intersection of the
three quadrics current circle, voltage ellipse and MTPV
hyperbola, i.e. ∂I(ı̂max) ∩ MTPV(ωk) ∩ ∂V(ωk, ûmax).
All three quadrics are functions of the currents iks and,
the latter two, of the angular velocityωk additionally. This
makes the problem solvable, since the given three equa-
tions and three unknowns can be resolved. However, to
find the solution, the roots of a 16th-order polynomial
must be found (see algorithm below), and hence ωMTPV

k,cut-in
is the only parameter which must be computed numeri-
cally (but offline). The procedure to obtain ωMTPV

k,cut-in is as
follows:

(i) Rewrite the current circle ∂I(ı̂max) as explicit
function of one current component, e.g. ids =√

ı̂2max−(iqs )2.
(ii) Insert this component into the voltage ellipse (17)

and the MTPV hyperbola (29) to obtain two func-
tions with the two unknowns ωk and iqs .

(iii) Rewrite these two functions as second-order poly-
nomials in ωk, i.e. p1 := a2(ids )ω2

k + a1(ids )ωk +
a0(ids ) and p2 := b2(ids )ω2

k + b1(ids )ωk + b0(ids )
where the coefficients a2, a1, a0 and b2, b1, b0
depend on ids , respectively.

(iv) Define the Sylvester matrix

S(ids ) :=

⎡
⎢⎢⎣
a2(ids ) a1(ids ) a0(ids ) 0
0 a2(ids ) a1(ids ) a0(ids )

b2(ids ) b1(ids ) b0(ids ) 0
0 b2(ids ) b1(ids ) b0(ids )

⎤
⎥⎥⎦

and compute its resultant RS(ids ) := det(S(ids ))
which is a 16th-order polynomial (see Zippel,
2012, pp. 141–146).

(v) SolveRS(ids ) = 0 numerically for ids and insert the
solution(s) into the current circle (19) to obtain
values for iqs .

(vi) Calculate the solution candidates for ωMTPV
k,cut-in by

inserting both currents into either the voltage
ellipse (17) or the MTPV hyperbola (29) and
choose the one with the smallest positive value.

.. Online computation (only if necessary) of the
maximally feasible torque mFW

m,feas(ωk) during FW
operation
For angular velocities higher than the feasible MTPC
angular velocity, i.e. |ωk| > ωMTPC

k,feas (mm,ref ), and reference

torques smaller than the maximally feasible FW torque
mFW

m,feas(ωk), i.e. |mm,ref | ≤ mFW
m,feas(ωk), FW is the optimal

operation strategy of the electrical machine. For given
ωk, the current vector ik,FWs,feas (ωk) (in the second quad-
rant, see green square in Figure 5(c)) which repre-
sents the intersection of current circle and voltage ellipse,
i.e. ∂I(ı̂max) ∩ ∂V(ωk, ûmax), is obtained analytically by
invoking the algorithm in Appendix A.4. Inserting this
current vector into the torque equation (3) gives themax-
imally feasible FW torque

mFW
m,feas(ωk)

(3):= 3
2
np
(
ik,FWs,feas (ωk)

)�J(Lks ik,FWs,feas (ωk) + ψk
pm

)
,

(42)

which clearly varies with the actual angular velocity ωk.

.. Online computation (only if necessary) of the
MTPV cut-in torque mMTPV

m,cut-in(ωk) for MTPV operation
For angular velocities higher than the MTPV cut-
in speed, i.e. |ωk| > ωMTPV

k,cut-in and reference torques
higher than the MTPV cut-in torque mMTPV

m,cut-in(ωk),
i.e. |mm,ref | ≥ mMTPV

m,cut-in(ωk), the electrical machine must
be operated in MTPV mode. For given ωk, the inter-
section point ik,MTPV

s,cut-in (ωk) (in the second quadrant, see
orange square in Figure 5(c)) of voltage ellipse and
MTPV hyperbola, i.e. ∂V(ωk, ûmax) ∩ MTPV(ωk) , can
be computed analytically with the help of the algorithm
presented in Appendix A.4. Inserting the solution ik,MTPV

s,cut-in
into the torque equation (3) gives the MTPV cut-in
torque

mMTPV
m,cut-in(ωk)

(3):= 3
2
np
(
ik,MTPV
s,cut-in (ωk)

)�
× J
(
Lks i

k,MTPV
s,cut-in (ωk) + ψk

pm

)
. (43)

Note that maximally feasible FW torque and MTPV cut-
in torque are equivalent at the MTPV cut-in angular
velocity, i.e.

mFW
m,feas(ω

MTPV
k,cut-in) = mMTPV

m,cut-in(ω
MTPV
k,cut-in),

since also the respective current vectors do equal,
i.e. ik,FWs,feas (ω

MTPV
k,cut-in) = ik,MTPV

s,cut-in (ωMTPV
k,cut-in) (see green

square and orange square in Figure 5(c)). Please
also note that green square and orange square are
actually located at the same intersection point in the
current locus; for illustration, both squares are slightly
shifted away from their original location to make both
squares visible.
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5.2 Selection of the optimal operation strategy

The operationmanagement is illustrated in Figure 5(a). It
is divided into two parts: the offline and the online com-
putation. The inputs to the online and offline parts are
the machine parameters Lds , L

q
s , Lm, ψk

pm, Rs, np, ı̂max and
ûmax, and the constant operationmanagement parameters
nominal torque mm,nom = mMC

m,nom(ı̂max) and the MTPV
cut-in speed ωMTPV

k,cut-in (both can be computed offline).
Once the operation management is initialised, the

feedforward torque controller is ready for online compu-
tation and, at each sampling instant t = kTs (with index
k ∈ N and cycle period Ts), the actual values of the elec-
trical speed ωk(t) (measured or estimated) and reference
torque mm,ref (t ) (coming from an outer control loop)
serve as inputs to the online part. First, if necessary, the
reference torque is saturated, i.e.

mm,ref := satmm,nom (mm,ref )

:=
{
sign(mm,ref )mm,nom, |mm,ref | > mm,nom

mm,ref , |mm,ref | ≤ mm,nom,

(44)

to guarantee that mm,ref ∈ [−mm,nom,mm,nom] remains
within the nominal (hence admissible) torque range.
The remaining three operation management parameters,
such as (i) feasible MTPC speed ωMTPC

k,feas (mm,ref ) (a func-
tion of the saturated torque reference; see (41) and blue
dashed line ( ) in Figure 5(b)), (ii) feasible FW torque
mFW

m,feas(ωk) (a function of actual speed, see (42)), and
(iii) the MTPV cut-in torque mMTPV

m,cut-in(ωk) (a function
of actual speed, see (43)) must exclusively be computed,
if the decision tree reaches the respective decision points
(diamonds) in Figure 5(a). This exclusive (only if needed)
computation reduces – besides the proposed analytical
solutions – the computational burden of the real-time
implementation. The selection of the optimal strategy is
based on the decision tree (flow chart) depicted in Figure
5(a) and is explained in the following:

� MTPC: If |ωk| ≤ ωMTPC
k,feas (mm,ref ), i.e. ‘Yes’ in Figure

5(a), the optimal current reference vector iks,ref =
ik,MTPC
s,ref is determined by the intersection point of
torque hyperbola and MTPC hyperbola, i.e. iks,ref ∈
T(mm,ref ) ∩ MTPC (see Table 1). For this case,
the feasible torque is solely limited by the nominal
torque mm,nom. In Figure 5(c) (torque over speed)
and Figure 5(c) (current locus), the corresponding
MTPCoperationmode ismarked by the blue shaded
area and the thick blue line ( ).

� MC: If ωMTPC
k,feas (mm,ref ) < |ωk| ≤ ωMTPV

k,cut-in and
|mm,ref | > mFW

m,feas(ωk), i.e. ‘No/Yes/No’ in
Figure 5(a), the optimal current reference

vector iks,ref = ik,MC
s,ref is given by the intersection

∂I(ı̂max) ∩ ∂V(ωk, ûmax) of current circle and volt-
age ellipse (see Table 1). Note that feasible MTPC
speed ωMTPC

k,feas (mm,ref ) and feasible FW torque
mFW

m,feas(ωk) decrease for increasing values of (satu-
rated) reference torque mm,ref and angular velocity
ωk, respectively (see Figure 5(b)). The MC opera-
tion mode is marked by the thick orange line ( )
in Figure 5(b,c), respectively.

� FW: If ωMTPC
k,feas (mm,ref ) < |ωk| ≤ ωMTPV

k,cut-in and
|mm,ref | ≤ mFW

m,feas(ωk) or |ωk| > ωMTPV
k,cut-in and

|mm,ref | < mMTPV
m,cut-in(ωk), i.e. ‘No/Yes/Yes’ or

‘No/No/Yes’ in Figure 5(a), the machine is oper-
ated in FW mode. The optimal reference current
vector iks,ref = ik,FWs,ref is obtained by the intersection
T(mm,ref ) ∩ ∂V(ωk, ûmax) of torque hyperbola and
voltage ellipse (see Table 1 and dotted green line
( ) in Figure 5(b,c). Note that the MTPV cut-in
torque mMTPV

m,cut-in(ωk) decreases for increasing speed
ωk (since the voltage ellipse shrinks). The operation
in FW is highlighted by the light green shaded area
in Figure 5(b,c), respectively.

� MTPV: If |ωk| > ωMTPV
k,cut-in and |mm,ref | ≥

mMTPV
m,cut-in(ωk), i.e. ‘No/No/No’ in Figure 5(a), MTPV

becomes active and the optimal reference cur-
rent vector iks,ref = ik,MTPV

s,ref is computed by finding
the intersection ∂V(ωk, ûmax) ∩ MTPV of volt-
age ellipse and MTPV hyperbola (see Table 1).
MTPV operation is indicated by the thick light blue
line ( ) in Figure 5(b,c), respectively.

In view of Remark 4.6, the operation strategy MTPF is
not considered. It only gives a rough approximation of the
MTPV strategy, and the MTPV strategy should be pre-
ferred for implementation, since it is more accurate and
yields a higher efficiency.

6. Implementation

The theoretical derivations are backed by the follow-
ing two implementations and their comparison with the
numerical approaches: computer simulation of the algo-
rithm to find the roots of a fourth-order polynomial ana-
lytically (see Appendix A.1.3), and the real-time imple-
mentation of the proposed analytical MTPC strategy and
its application to a nonlinear RSM in the laboratory.

6.1 Performance comparison of numerical and
proposed analytical solver to find the roots of
fourth-order polynomials

Solving fourth-order polynomials analytically is the
primary task in the presented approach. It has been
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Figure . Results of the performance comparison of numerical and analytical solution to find the roots of fourth-order polynomials: (a)
execution times for N=  and (b) histograms of the test data (in ascending order) with average execution timesμn = 43.4 · 10−6s and
μa = 7.23 · 10−6s , and standard deviations σn = 1.61 · 10−6s and σa = 0.73 · 10−6s for numerical and analytical solution, respectively.

implemented in MATLAB R2016b as MEX code
(C function) and compared with the built-in roots
function (C function based on eig) using a numer-
ical approach. The comparison has been conducted
by measuring the execution times of the respective
algorithms for input polynomials with randomly gen-
erated coefficients. The five coefficients ci = beii of the
fourth-order polynomial in (A10) were generated by
random bases bi � [0, 1] (double precision) and random
integer exponents ei � [−10, 10] for i � {0, 1, …, 4}.
Moreover, the test has been repeated for N = 106 runs
in order to mitigate unpredictable delay times due to
task scheduling or memory issues on the test PC. The
results of the experiment are depicted in Figure 6. A
comparison of the histograms allows to draw two main
conclusions: (i) on average, the analytical solution is
about six times faster, and (ii) the standard deviation
of the numerical approach is remarkably higher which
makes the estimation of the execution timemore difficult

for the numerical approach. Moreover, it is important
to note that, in view of the decision tree in Figure 5(a),
the roots of fourth-order polynomials must be com-
puted several times; e.g. for MTPV, the roots of three
fourth-order polynomials must be found: twice for
the computation of the online operation management
parameters ωMTPC

k,feas (mm,ref ) and mMTPV
m,cut-in(ωk), and once

for the computation of the optimal reference current
vector (see Figure 5(a) and recall Section 5.1). In this
case, the computation of the analytical solution is (at
least) 18 times faster than that of the numerical solution.

6.2 Measurement results

The analytical computation of the MTPC reference cur-
rent vector iks,ref = ik,MTPC

s,ref (see Table 1) was implemented
at a laboratory set-up and measurements were con-
ducted in order to verify the presented theory. Instead of
employing a fairly linear PMSM, a highly nonlinear RSM

Figure . Nonlinear flux linkages (a)ψd
s (ids , i

q
s ) and (b)ψ

q
s (ids , i

q
s ) of a custom-built . kW RSM with parameters as in () (the maps are

only shown for the first quadrant, i.e. ids ≥ 0 and iqs ≥ 0, where a positive machine torque can be produced).
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Figure . Nonlinear components (a) Lds (i
d
s , i

q
s ), (b) L

q
s (ids , i

q
s ) and (c) Lm(ids , i

q
s ) of the inductance matrix () (the inductances are only

shown for the first quadrant, i.e. ids ≥ 0 and iqs ≥ 0).

served as device under test so as to prove the robustness
of the presented theory and its industrial applicability.
Finally, the measurement results of the analytical MTPC
approach were compared with the numerically calculated
reference currents.

.. Measurement set-up and scenario
The presented theory has been implemented and verified
experimentally on a custom-build 9.6 KWRSM (courtesy
of Prof. Maarten Kamper, Stellenbosch University, South
Africa) with the parameters

Rs = 0.4�, ωk,nom = 2π
60 s · 1500 rpm = 157.07 rad

s ,

mm,nom = 61Nm,

ı̂max = 29.7A, and ûmax = 590V,

⎫⎬
⎭
(45)

and the nonlinear flux linkage maps as depicted in
Figure 7 (maps were obtained from FEM). The current-
dependent inductances, shown in Figure 8, were cal-
culated by numerical differentiation of the flux maps
with respect to the currents. The overall laboratory set-
up is depicted in Figure 9 and comprises the dSPACE
real-time system (A) with processor board DS1007 and
various extensions and I/O boards, two 22 k W SEW
inverters (B1, B2) in back-to-back configuration sharing
a common DC link, the HOST-PC (C) running MAT-
LAB/Simulink with RCPHIL R2015b and dSPACE Con-
trolDesk 5.5 for rapid-prototyping, data acquisition and
evaluation, the custom-built 9.6 kW RSM (D1) as device
under test and a 14.5 kW SEW PMSM (D2) to regulate
themechanical speed.Moreover, the Lorenz R© torque sen-
sor (E) allows to measure the mechanical output power

(a)

(b)

(c)

Figure . Laboratory set-upwith (a) dSPACE real-time system (A), voltage-source inverters (B) and (B) connected back-to-back, (b) Host-
PC (C) for rapid-prototyping, and (c) RSM (D) and PMSM (D), and torque sensor (E).



22 H. ELDEEB ET AL.

(a) (b)

Figure . Measurement results for a nonlinear custom-build . kWRSM at 150 rad
s : Comparison of the optimal reference currents iks,ref =

(ids,ref, i
q
s,ref )

� for MTPC mode (a) in Cartesian coordinates and (b) in polar coordinates computed by the conventional numerical and the
proposed analytical solution (for the experiment, the reference torquemm,ref was stepped up from zero to nominal torque by increments
of  Nm and held constant for two seconds).

(not used in here). The experiments were conducted for
MTPC operation at the constant speed ωk ≈ ωk,nom and
for a positive reference torque only (operation as motor).
The reference torque mm,ref was increased stepwise by
increments of 1Nm from zero to nominal torquemm,nom
and held constant at each step for two seconds. The non-
linear flux linkages and inductances were tracked online
and fed into the feedforward torque controller at each
sampling step to improve the accuracy of the presented
analytic MTPC algorithm.

To be able to express the nonlinear RSM dynamics in
the form (1) with affine flux linkage (2), the nonlinear
flux linkage (as depicted in Figure 7) of the RSMwere lin-
earised online (at each sampling instant) by invoking the
following first-order Taylor expansion

ψk
s (i

k
s ) ≈ dψk

s (i
k
s )

diks

∣∣∣∣∣
iks=iks,0︸ ︷︷ ︸

=:Lks=:Lks (i
k
s,0)

(
iks − iks,0

)+ ψk
s (i

k
s,0)

= Lks i
k
s + ψk

s (i
k
s,0) − Lks i

k
s,0︸ ︷︷ ︸

=:ψk
m=:ψk

m(iks,0)

(46)

around the actual operation point iks,0 := (ids,0, i
q
s,0)

� ∈
R

2 (actual current vector). The linearised (locally affine)
flux linkage in (46) with the differential inductance
matrix Lks (i

k
s,0) := [Lds (i

k
s,0), Lm(iks,0); Lm(iks,0), L

q
s (iks,0)] ∈

R
2×2 and the ‘magnetisation’ flux linkage vector ψk

m :=
(ψd

m, ψ
q
m)� is clearly similar to the affine flux linkage

in (2) (set ψk
pm = ψk

m). Finally, the analytical solution
to compute the optimal MTPC reference current vector
iks,ref = ik,MTPC

s,ref was implemented. The obtained reference

currents for numerical and analytical solution were low-
pass filtered (with time constant Tf = 50Ts) and their
mean values over the 2 s-time interval (where the torque
reference was held constant) were computed for each
torque reference step.

.. Discussion of the results
The computed reference currents of both, the numeri-
cal and the analytical torque feedforward controller, are
depicted in Figure 10. Results in the Cartesian coordi-
nates are shown in Figure 10(a), where in Figure 10(b),
polar coordinates were used. The former shows, in par-
ticular for currents with small magnitude, that numer-
ical and analytical results coincide with high accuracy.
Only for larger currents (beyond ids ≥ 8A), a deviation
can be observed. However, it remains within an accept-
able range which becomes clear if the polar coordinate
representation is taken into account. Here, the numerical
solution shows an unexpected shape in the lower current
magnitude region which could be an error due to a dete-
riorated interpolation and/or a deteriorated accuracy of
the numerical solver. Nonetheless, the angle difference is
small over thewhole operation range and the results show
that both approaches give almost identical reference cur-
rents.

7. Conclusion and future work

This work introduced a unified theory to solve the opti-
mal feedforward torque control problem of anisotropic
SMs analytically while stator resistance and cross-
coupling (mutual) inductance are explicitly considered.
For all operation strategies such as (a) MTPC (which, in
literature, is often called MTPA), (b) MC, (c) FW and
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(d) MPTV or MTPF, analytical expressions for the opti-
mal reference currents are derived. To the best knowledge
of the authors, such analytical solutions including stator
resistance and mutual inductance for MTPC, MC, FW,
MTPVandMTPFof anisotropic SMswere scarcely inves-
tigated this far or not available at all.

The obtained analytical solutions are attractive, since
they are easier to implement, more accurate and faster to
compute.Moreover, for the operationmanagement of the
machine, algorithms were proposed which allow to com-
pute the crucial operationmanagement parameters based
on which the actually optimal operation strategy can eas-
ily be selected online. The theoretical findings were illus-
trated by (i) a performance comparison of the conven-
tional numerical and the proposed analytical algorithm
for finding the roots of a fourth-order polynomial and
(ii) measurement results at a nonlinear reluctance syn-
chronousmachine (forMTPC). The implemented analyt-
ical solution is obtained significantly faster and matches
with the conventional numerical solution with high accu-
racy.

Future work will focus on the extension of the uni-
fied theory to nonlinear flux linkages (without the need
of linearisation) and the consideration of iron losses in
the optimisation problem as well.

Notes

1. The terminology ‘MaximumTorque per Current (MPTC)’
will be used in this paper (see also Remark 4.2).

2. That is, the synchronously rotating k = (d, q)-coordinate
system with orthogonal axes d and q after Clarke and Park
transformation (Dirscherl et al., 2015; Teodorescu et al.,
2011).

3. The factor 3/2 is due to an amplitude-correct Clarke trans-
formation (Schröder, 2009, Section 16.7).

4. Note that the mutual inductance Lm changes its sign
with the negative product of the currents, i.e. sign(Lm) =
−sign(ids · iqs ) (Hackl et al., 2015, Figure 2).

5. Note that, for some vectors x, c ∈ R
n and a symmetric

matrix M = M� ∈ R
n×n, the following hold: ( dc

�x
dx )� =

( dc
�x

dx1
, . . . , dc�x

dxn
)� = (c1, . . . , cn)� = c and ( dx

�Mx
dx )� =

( dx
�Mx
dx1

, . . . , dx�Mx
dxn

)� = (M + M�)x = 2Mx (see Bern-
stein, 2009, Proposition 10.7.1 i)).

6. The ith leading principle minor of a matrix is the deter-
minant of the (i, i)-north-western sub-matrix of the
matrix (Bernstein, 2009, Proposition 8.2.7).

7. That is, for all γ ∈ R and A ∈ R
n×n, the following holds

det(γA) = (γ )n det(A). Hence, the application of the
Sylvester’s criterion to negative definite matrices yields
alternating signs of the leading principle minors.

8. For case (iii), substitute y for x.
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Appendices

Appendix 1. Quadrics

In this appendix, all necessary mathematical derivations
are presented for two general quadrics given by

QA(x) := x�Ax + 2a�x + α and
QB(x) := x�Bx + 2b�x + β, (A1)

where

A = A� :=
[
a11 a12
a12 a22

]
∈ R

2×2,

a :=
(
a1
a2

)
∈ R

2, α ∈ R,

B = B� :=
[
b11 b12
b12 b22

]
∈ R

2×2,

b :=
(
b1
b2

)
∈ R

2 and β ∈ R.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

The main goal is to explain in detail how analytical solu-
tions to theMTPC,MTPV andMTPF optimisation prob-
lems can be obtained and how analytical solutions for the
intersection points of two general quadrics can be found.
As it will be shown, all problems can be solved by finding
the roots of a fourth-order quartic polynomial for which
(luckily) still an analytical solutions exists.

A.. Formulation of the optimisation problemwith
equality constraints
The optimisation problems MTPC, MTPV and MTPF
can be formulated in a general framework as optimisa-
tion problems with equality constraint by invoking the

quadrics QA(iks ) and QB(iks ) in (A1) as follows:

iks,ref := argmaxiks −
(

(iks )
�Aiks + 2a�iks + α︸ ︷︷ ︸

=:QA(iks )

)

s.t. (iks )
�Biks + 2b�iks + β︸ ︷︷ ︸

=:QB(iks )

= 0. (A3)

The first idea, based on quadrics, was presented in Eldeeb
et al. (2016) for the MTPC strategy. The optimisa-
tion problem (A3) can be reformulated as Lagrangian
(see Boyd & Vandenberghe 2004, Chapter 5), i.e.

L(iks , λ) := −QA(iks ) + λQB(iks )
(A3)= −[(iks )�Aiks + 2a�iks + α

]
+ λ

[
(iks )

�Biks + 2b�iks + β
]
, (A4)

where the (possibly complex) Lagrangian multiplier λ ∈
C must be introduced for the equality constraint. For the
three different optimisation problems MTPC, MTPF and
MTPV, the matrices A, B, vectors a, b and scalars α,β
must be chosen accordingly as specified in the following:

� MTPC:A = I2, a = (0, 0)�, α = 0 and B = T , b =
t and β = τ (mm,ref ),

� MTPV: A = V (ωk), a = v(ωk), α = ν(ωk, ûmax)

and B = T , b = t and β = τ (mm,ref ), and
� MTPF: A = F , a = f , α = φ and B = T , b = t and

β = τ (mm,ref ),

where T , t and τ (mm,ref ) are as in (9),V (ωk), v(ωk) and
ν(ωk, ûmax) as in (15) and F , f and φ as in (21). To obtain
the optimal reference current vector as in (A3), the fol-
lowing necessary and sufficient conditions must be eval-
uated.

A.1.1. Necessary condition for a maximum. To find a
maximum, the following necessary conditionmust be sat-
isfied: The gradient5 of the Lagrangian must be equal to
the zero vector, i.e.

gL(iks , λ) :=
(
dL(iks , λ)

d(iks , λ)

)�

=

⎛
⎜⎜⎜⎝
(
dL(iks , λ)

diks

)�

dL(iks , λ)

dλ

⎞
⎟⎟⎟⎠ != 03

(A3)=⇒
(−2Aiks − 2a + λ(2Biks + 2b)

(iks )�Bi
k
s + 2b�iks + β

)
!= 03.

(A5)
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By defining

M(λ) := λB − A =
[

λ b11 − a11 λ b12 − a12

λ b12 − a12 λ b22 − a22

]
and

m(λ) := λ b− a =
(

λ b1 − a1

λ b2 − a2

)
, (A6)

one may rewrite the first two rows in (A5) in the compact
form

2[λB − A]iks + (λ b− a)
(A6)= 2M(λ)iks + 2m(λ) = 02

(A7)

and, solving for iks = i k,
s , yields

i k,
s (λ) = −[λB − A]−1(λ b− a)
(A6)= −M(λ)−1m(λ)

(A8)

where

M(λ)−1 = [λB − A]−1

= 1
detM(λ)

[
λ b22 − a22 −λ b12 + a12

−λ b12 + a12 λ b11 − a11

]
= ([λB − A]−1)� = (M(λ)−1)�

and

detM(λ) = (λ b11 − a11)(λ b22 − a22) − (λ b12 − a12)2

= (
detB

)
λ2 + ( det (B − A

)− detA − detB
)
λ

+ detA.

Inserting iks = i k,
s (λ) as in (A8) into the constraint
quadric QB(iks ) as in (A3) gives a quartic polynomial in
λ as follows:

m(λ)�M(λ)−1BM(λ)−1m(λ)

−2b�M(λ)−1m(λ) + β = 0∣∣ · det (M(λ)
)2

=⇒ χ4(λ) := c4λ4 + c3λ3

+ c2λ2 + c1λ + c0 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A9)

with real coefficients

c4 := − (b11b22 − b212
) (
b22b21 − 2b1b2b12 + b11b22

+ βb212 − b11b22β
)

c3 := 2(a11b22 − 2a12b12 + a22b11)(b22b21 − 2b1b2b12
+ b11b22 + βb212 − b11b22β)

c2 := a21b11b222 − a21b212b22 − 2a1a2b11b12b22 + 2a1a2b312
− 2a1a11b1b222 + 2a1a11b2b12b22 + 4a1a12b1b12b22
− 2a1a12b2b11b22 − 2a1a12b2b212 − 2a1a22b1b212
+ 2a1a22b2b11b12 + a22b211b22 − a22b11b212
+ 2a2a11b1b12b22 − 2a2a11b2b212 − 2a2a12b1b11b22
− 2a2a12b1b212 + 4a2a12b2b11b12 + 2a2a22b1b11b12
− 2a2a22b2b211 − a211b22b22 + βa211b222
+ 2a11a12b1b2b22 + 2a11a12b22b12 − 4βa11a12b12b22
− 4a11a22b21b22 + 6a11a22b1b2b12 − 4a11a22b22b11
+ 4βa11a22b11b22 − 2βa11a22b212 + 3a212b21b22
− 10a212b1b2b12 + 3a212b22b11 − 2βa212b11b22
+ 6βa212b212 + 2a12a22b21b12 + 2a12a22b1b2b11
− 4βa12a22b11b12 − a222b21b11 + βa222b211

c1 := 2a21a22b212 − 2b11b22a21a22 − 4a1a2a12b212
+ 4b11b22a1a2a12 + 4b22a1a11a22b1
− 4a1a11a22b2b12 − 4b22a1a212b1
+ 4a1a212b2b12 + 2a22a11b212 − 2b11b22a22a11
− 4a2a11a22b1b12 + 4b11a2a11a22b2
+ 4a2a212b1b12 − 4b11a2a212b2 + 2a211a22b22
− 2b22βa211a22 − 2a11a212b22 + 2b22βa11a212
− 4a11a12a22b1b2 + 4βa11a12a22b12
+ 2a11a222b21 − 2b11βa11a222
+ 4a312b1b2 − 4βa312b12 − 2a212a22b21 + 2b11βa212a22

c0 := b22a21a212 − 2b12a21a12a22 + b11a21a222
− 2b22a1a2a11a12 + 2b12a1a2a11a22 + 2b12a1a2a212
− 2b11a1a2a12a22 + 2b2a1a11a12a22 − 2b1a1a11a222
− 2b2a1a312 + 2b1a1a212a22 + b22a22a211
− 2b12a22a11a12 + b11a22a212 − 2b2a2a211a22
+ 2b2a2a11a212 + 2b1a2a11a12a22 − 2b1a2a312
+ βa211a222 − 2βa11a212a22 + βa412.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A10)

A.1.2. Sufficient condition for a maximum. To obtain
a maximum under an equality constraint, the Hessian of
the Lagrangian L(iks , λ) must be negative definite, i.e.

HL(iks , λ) := d
d(iks , λ)

(
dL(iks , λ)

d(iks , λ)

)�
!
< 0. (A11)

The Hessian matrix is symmetric and given by

HL(iks , λ) := d
d(iks , λ)

(
dL(iks , λ)

d(iks , λ)

)�

=
[

2M(λ) 2Biks + 2b
(2Biks + 2b)� 0

]
= HL(iks , λ)� ∈ R

3×3. (A12)

The Hessian HL(iks , λ) is negative definite if and
only if all its leading principal minors6 have alternating
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signs (see Bernstein, 2009, Proposition 8.2.8, in combi-
nation with Bernstein, 2009, Proposition 2.7.17). More
precisely, the first and third leading principle minor
of (A12) must be negative whereas the second lead-
ing principle minor must be positive, i.e. 2m11(λ


)
(A6)=

2(a11 + λ
b11) < 0 (the first leading principal minor),
det(2M(λ
)) = 22 detM(λ
) > 0 (the second leading
principal minor) and det(HL(iks , λ
)) < 0 (the third
leading principal minor). Hence, the optimal (real)
Lagrangian multiplier λ
 ∈ R must satisfy

(i) λ
 < a11
b11

=⇒ 2
(
λ
b11 − a11

)
< 0

(ii) λ
 >

(
det
(
B−A
)
−detA−detB

)
−sign(detB) detB

×
(
1 ±

√
1 − 4 detA detB(

det
(
B−A
)
−detA−detB

)2)
=⇒ detM(λ
) > 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(A13)

Clearly, the conditions (i) and (ii) in (A13) must be sat-
isfied simultaneously and, therefore, imply negative defi-
niteness ofM(λ
) = λ
B − A. Moreover, by defining

C(iks , λ

) :=

[
I2, M(λ
)−1(Biks + b)
0�
2 , 1

]
∈ R

3×3

with detC(iks , λ
) = detC(iks , λ
)� = 1 and, by invok-
ing Bernstein (2009, Fact. 2.16.2), the Hessian matrix

HL(iks , λ

)

= 2C(iks , λ

)�

⎡
⎣M(λ
), 02

0�
2 , −((iks )�B� + b�)

M(λ
)−1(Biks + b
)
⎤
⎦C(iks , λ


)

(A11)

can be written as the product of three matrices. Hence,

det
[
HL(iks , λ


)
]

= −2
(
(iks )

�B� + b�)M(λ
)−1(Biks + b
)︸ ︷︷ ︸

=:γ∈R
· detM(λ
),

which, with detC(iks , λ
) = detC(iks , λ
)� = 1 and neg-

ative definiteness of M(λ
) = [A + λ
B]
(A13)
< 0, implies

that γ = ‖Biks + b‖2M(λ
) < 0 (a weighted normwith neg-
ative definiteM(λ
) < 0) is negative for all non-zero vec-
tors:

Bi k,
s (λ
) + b (A8)= −λ
B
[
A + λ
 B

]−1b+ b

= −(− I2 + λ
B
[
A + λ
 B

]−1)b
= [

A + λ
 B
]−1b

(A13)

= 02 for all λ
 as in (A13),

where, in the second step, Corollary 2.8.10 from Bern-
stein (2009) was used. Concluding, for the optimal
λ�, the third leading principle minor is (always) neg-
ative, i.e. det[HL(iks , λ
)] < 0. By checking definiteness
of (A11) for λ
 ∈ {λ


1, . . . , λ


4}, where M(λ
) > 0, the

analytical solution for the optimal reference current vec-
tor is finally given by

iks,ref
(A3):= i k,
s (λ
)

(A8)= −M(λ
)−1m(λ
)

= −[λ
 B − A
]−1(

λ
 b− a
)
. (A14)

Remark A.1

(The case m(λ) = 02 for all λ ∈ C):. Note that the
optimal reference current vector (A14) only gives a non-
trivial solution if m(λ) = λ b− a 
= 0. This is not true
for RSMs, where ψpm = 0 and, hence, t (9)= 02, v(ωk)

(15)=
02 and f (21)= 02. To solve these optimisation prob-
lems, (A3) must be re-formulated by shifting/translating
the quadrics QA(iks ) and QB(iks ) by some non-zero
but constant xs ∈ R

2. The shifted quadrics QA(īks + xs)
and QB(ī

k
s + xs) are obtained by inserting iks = īks + xs

into (A3) (for more details, see Appendix A.4).
Remark A.2 (Normalisation): For a numerical imple-
mentation, a normalisation of (8) might be beneficial
yielding a less ill-conditioned optimisation problem (the
coefficients of the fourth-order polynomial (A9) heavily
differ in magnitude). The normalised version of (8) is

ūks = R̄s ī
k
s + ω̄kJL̄

k
s ī
k
s + ω̄kJψ̄

k
pm, (A15)

where the normalised (unitless) quantities and param-
eters are defined by ūks := uks

ûmax
, R̄s := Rs

ûmax/ı̂max
, īks := iks

ı̂max
,

ω̄k := ωk
ωk,nom

, L̄ks := ωk,nom
ûmax/ı̂max

Lks and ψ̄
k
pm := ωk,nom

ûmax
ψk

pm. The
normalised (unitless) machine torque and its reference
are as follows:

m̄m := ωk,nom

ûmax ı̂max
mm and

m̄m,ref := ωk,nom

ûmax ı̂max
mm,ref .
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A.1.3. Analytical computation of the roots of a quartic
polynomial. The discriminant of the quartic polyno-
mial χ4(λ) as in (A9) can be computed as follows:

� := 256c34c
3
0 − 192c24c3c1c

2
0 − 128c24c

2
2c

2
0 + 144c24c2c

2
1c0

− 27c24c
4
1 + 144c4c23c2c

2
0 − 6c4c23c

2
1c0 − 80c4c3c22c1c0

+ 18c4c3c2c31 + 16c4c42c0 − 4c4c32c
2
1 − 27c43c

2
0

+ 18c33c2c1c0 − 4c33c
3
1 − 4c23c

3
2c0 + c23c

2
2c

2
1. (A16)

For � < 0, the quartic polynomial (A9) has two real
and two complex roots (all distinct); for � > 0, (A9)
has four real or four complex roots (all distinct) and, for
� = 0, (A9) has at least two equal roots (for more details,
see Rees, 1922). Euler’s solution will be presented (for
details, seeNickalls, 2009)which is based on the depressed
(and monic) quartic polynomial given by

χ4,dep(y) := y4 + py2 + qy + r = 0 (A17)

with real coefficients

p := 1
c24

(
c2 c4 − 3 c23

8

)
,

q := 1
c34

( c33
8

− c2 c3 c4
2

+ c1 c24
)
&

r := 1
c44

(
− 3c43

256
+ c34c0 − c24c3c2

4
+ c4c23c2

16

)
. (A18)

The depressed quartic polynomial (A17) is obtained by
inserting λ := y − c3

4c4
into (A9). To compute the roots of

the depressed quartic, one needs to find the three roots
z

1, z


2 and z

3 of Euler’s resolvent cubic polynomial given

by

χ3,res(z) := z3 + 2p z2 + (p2 − 4r) z − q2 = 0,
(A19)

where p, q and r are as in (A18). In Appendix A.1.4, the
analytical solution to compute the three roots z


1, z

2 and

z

3 of the resolvent cubic (A19) is presented. Finally, for
known resolvent roots z


1, z

2 and z


3, the four roots λ

1, λ


2,
λ

3 and λ


4 of the quartic polynomial (A9) are given by

λ

1 = (−1)l

2

( √
z

1 +√z


2 +√z

3

)
− c3

4c4
,

λ

2 = (−1)l

2

( √
z

1 −√z


2 −√z

3

)
− c3

4c4
,

λ

3 = (−1)l

2

(
−√z


1 +√z

2 −√z


3

)
− c3

4c4
, and

λ

4 = (−1)l

2

(
−√z


1 −√z

2 +√z


2

)
− c3

4c4
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(A20)

where l� {0, 1}must be chosen such that (Nickalls, 2009)

(−1)l
(
λ

1λ



2λ



3 + λ


1λ


2λ



4 + λ


1λ


3λ



4 + λ


2λ


3λ



4
) = −q.

A.1.4. Analytical computation of the roots of a cubic poly-
nomial. Consider themonic cubic polynomial with real
coefficients given by

χ3(z) := z3 + d2z2 + d1z + d0 = 0 where
d2, . . . , d0 ∈ R. (A21)

Its roots z

1, z


2 and z

3 can be computed analytically as

described in the following paragraph (Abramowitz, Ste-
gun, & Miller, 1964, p. 17). Note that the cubic polyno-
mial χ3(z) has (a) one real and a pair of complex conju-
gate roots if q̃3 + r̃2 > 0, (b) only real roots but at least
two are equal if q̃3 + r̃2 = 0, and (c) only real roots but
all are distinct if q̃3 + r̃2 < 0. For the following, define

q̃ := d1
3

− d22
9

and r̃ := d1d2 − 3d0
6

− d32
27

.

Then, for

s1 :=
√
3r̃ +

√
q̃3 + r̃2 and

s2 :=
√
3r̃ −

√
q̃3 + r̃2,

the three roots of the cubic polynomial (A21) are given
by

z

1 = (s1 + s2) − d2

3
and

z

2,3 = −1

2
(s1 + s2) − d2

3
± j

√
3
2

(s1 − s2).

(A22)

Appendix . Computation of the quadrics (implicit
expressions) for MTPC, MTPV andMTPF
To derive the implicit forms for the MTPC, MTPV and
MTPF hyperbolas presented in Section 3.2, the first two
rows of the gradient (A5) must be set to zero, i.e.

−Aiks − a + λ(Biks + b) = 02

=⇒ λ

(
(b11, b12)iks + b1
(b12, b22)iks + b2

)
=
(

(a11, a12)iks + a1
(a12, a22)iks + a2

)
.

(A23)
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Rewriting this equation componentwise, one may solve
for and eliminate the Lagrangianmultiplier λ as follows:

λ = (a11, a12)iks + a1
(b11, b12)iks + b1

= (a12, a22)iks + a2
(b12, b22)iks + b2

=⇒ (
(a11, a12)iks + a1

)(
(b12, b22)iks + b2

)
− ((a12, a22)iks + a2

)(
(b11, b12)iks + b1

) = 0.
(A24)

Re-arranging leads to the following quadric:

(iks )
�MXiks + 2m�

X i
k
s + μX

where the respective matrix, vector and scalar are as fol-
lows:

MX = M�
X

(A2)=
[

a11b12 − a12b11 1
2

(
a11b22 − a22b11

)
1
2

(
a11b22 − a22b11

)
a12b22 − a22b12

]
,

mX = 1
2

(
a11b2 + a1b12 − a12b1 − a2b11
a12b2 + a1b22 − a22b1 − a2b12

)
and

μX = a1b2 − a2b1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A25)

The corresponding matrix MX, vector mX and scalar μX
in (A23) with X � {C, V, F} are obtained for

� theMTPChyperbola (23) (i.e. X=C) by settingA =
I2, a = (0, 0)�, B = T and b = t ;

� the MTPV hyperbola (29) (i.e. X = V) by setting
A = V (ωk), a = v(ωk), B = T and b = t ; and

� theMTPF hyperbola (33) (i.e. X= F) by settingA =
F , a = f , B = T and b = t ,

with T and t as in (9),V (ωk) and v(ωk) as in (15) and F
and f as in (21), respectively.

Appendix . Explicit expressions for current circle,
voltage ellipse, and torque, MTPC, MTPV andMTPF
hyperbolas
Consider an arbitrary quadric QA(iks ) as in (A1), where
A, a (and there respective entries aij and ai) and α are as
in (A2). An explicit expression forQA(iks ) can be obtained
by solvingQA(iks ) as in (A1) for the quadrature current i

q
s .

To derive an explicit expression, different cases must be
taken into account (like signs or whether certain param-
eters are zero or not) which makes the use of explicit
expressions tedious. Assuming the explicit expression

of the quadric QA(iks ) as in (A1) exists, it is given by

A(ids ) = −a12ids + a2
a22

±
√(

a12ids + a2
)2 − a22

(
a11(ids )2 + 2a1ids + α

)
a22

.

(A26)

Clearly, to have a meaningful expression, the following
must hold: a22 � 0 and (a12ids + a2)2 − a22(a11(ids )2 +
2a1ids + α) ≥ 0 for all ids ∈ R (which might not hold
in general; leading to different cases where (A26) will
hold). To compute the explicit expressions for torque,
current circle, voltage ellipse, MTPC, MTPV or MTPF
hyperbola, the corresponding matrix A, vector a and
scalar α must be chosen accordingly (e.g. for the volt-
age ellipse (17), choose A = V (ωk), a = v(ωk) and
α = ν(ωk, ûmax) with V (ωk), v(ωk) and ν(ωk, ûmax) as
in (15)).

Appendix . Computation of the intersection points of
two arbitrary quadrics
To find the intersection point(s) x
 of two arbitrary
quadrics QA(x) and QB(x) as in (A1), there are several
possible algorithms. In this paper, an algorithm is pre-
sented which leads to a problem of ‘finding the roots of a
fourth-order polynomial’ again, and hence can be solved
analytically (see Section A.1.3). For the following, intro-
duce

D :=
[
d11 d12
d12 d22

]
∈ R

2×2, d :=
(
d1
d2

)
∈ R

2, xs ∈ R
2,

M :=
[
m11 m12
m12 m22

]
∈ R

2×2,m :=
(
m1
m2

)
∈ R

2, and μ ∈ R

and the quadric

QM(x) := x�Mx + 2m�x + μ. (A27)

To compute the analytical solutions of the intersection
points of the quadrics QA(x) and QB(x), three different
cases must be considered:

(i) If α � 0 and β � 0 in (A1), then define the differ-
ence quadric of the scaled quadrics as follows:

QD(x) := QA(x)
α

− QB(x)
β

= x�Dx + 2d�x

= x�
(A

α
− B

β

)
x + 2

( a
α

− b
β

)�
x = 0,

(A28)

where D := (A
α

− B
β
) and d := ( a

α
− b

β
) and set

M := A, m := a and μ := α (or M := B, m := b
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andμ := β in (A27)). Both are possible and do not
alter the result.

(ii) If α = 0 and β � 0 in (A1), then setD := A, d := a
in (A28), andM := B,m := b andμ := β in (A27);
or
if α � 0 and β = 0 in (A1), then setD := B, d := b
in (A28), andM := A,m := a andμ :=α in (A27).

(iii) If α = 0 and β = 0 in (A1), the quadrics QA(x)
and QB(x) must be shifted (translated) by xs ∈
R

2 \ {02} by inserting x := y + xs into (A1), i.e.

QA(y + xs) := y�Ay + 2 (x�
s A + a�)︸ ︷︷ ︸

=:a�
s

y

+ x�
s Axs + 2a�xs︸ ︷︷ ︸

αs

and

QB(y + xs) := y�By + 2 (x�
s B + b�)︸ ︷︷ ︸

=:b�
s

y

+ x�
s Bxs + 2b�xs︸ ︷︷ ︸

βs

,

such that the shifted scalars αs and βs are non-zero,
i.e. αs � 0 and βs � 0. Then, case (i) holds true
again (but now in y) and one sets D := ( A

αs
− B

βs
),

d := ( as
αs

− bs
βs

) in (A28), andM := A,m := as and
μ :=αs (orM := B,m := bs andμ :=βs) in (A27).
Finally, to obtain the intersections points x
, the
solution y
 must be translated again, i.e. x
 = y
 +
xs.

Note that, for all three cases (i), (ii) and (iii),8 D = D�

and one may rewrite (A28) as follows:

QD(x) = x�Dx + 2d�x = x�(Dx + 2d︸ ︷︷ ︸
!=γ Jx

) = 0. (A29)

Since the vectors Jx (or J�x) and x are perpendicular
to each other, the following holds γ (Jx)�x = γ x�J�x =
0 = γ x�Jx for all γ ∈ R \ {0}, and so (A29) is clearly sat-
isfied for Dx + 2d != γ Jx (the factor γ is necessary to

allow for scaled versions of the vector Jx; such that dif-
ferent lengths are admissible). Hence, one obtains

[
D − γ J

]
x + 2d = 02 =⇒ x(γ ) = −2

[
D − γ J

]−1d
where

[
D − γ J

]−1

= 1
γ 2 + d11d22 − d212

[
d22, −d12 − γ

γ − d12, d11

]
.

Inserting x(γ ) as above into the quadric QM(x) as
in (A27) gives a fourth-order polynomial in γ , i.e.

4d�[D − γ J
]−�M

[
D − γ J

]−1d − 4m�[D − γ J
]−1d

+μ = 0
∣∣ · ( det [D − γ J

])2
=⇒ χ4(γ ) := ξ4γ

4 + ξ3γ
3 + ξ2γ

2 + ξ1γ + ξ0 = 0
(A30)

with coefficients

ξ4 := μ

ξ3 := 4
(
m1 d2 − m2 d1

)
ξ2 := 4m22 d21 − 8m12 d1 d2 + 4m2 d1 d12

− 4m1 d22 d1 + 4m11 d22 + 4m1 d2 d12
− 4m2 d11 d2 − 2μ d212 + 2μ d11 d22

ξ1 := 4m2 d1 d212 − 4m1 d2 d212 + 8m11 d22 d12
− 8m12 d22 d11 + 8m12 d21 d22 − 8m22 d21 d12
+ 4m1 d2 d11 d22 − 4m2 d1 d11 d22
− 8m11 d1 d2 d22 + 8m22 d1 d2 d11

ξ0 := 4m22 d21 d212 − 8m12 d21 d12 d22 + 4m11 d21 d222
− 8m22 d1 d2 d11 d12 + 8m12 d1 d2 d11 d22
+ 8m12 d1 d2 d212 − 8m11 d1 d2 d12 d22
+ 4m2 d1 d11 d12 d22 − 4m1 d1 d11 d222
− 4m2 d1 d312 + 4m1 d1 d212 d22 + 4m22 d22 d211
− 8m12 d22 d11 d12 + 4m11 d22 d212
− 4m2 d2 d211 d22 + 4m2 d2 d11 d212
+ 4m1 d2 d11 d12 d22 − 4m1 d2 d312
+ μ d211 d222 − 2μ d11 d212 d22 + μ d412.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A31)

The real root γ � of the four roots γ 

1 , γ 


2 , γ 

3 , γ 


4 of
the fourth-order polynomial χ4(γ ) as in (A30) gives the
desired intersection point in the quadrant of interest, i.e.

for cases (i) and (ii): x
(γ 
) = −2
[
D − γ 
J

]−1d, and
for case (iii): x
(γ 
) = −2

[
D − γ 
J

]−1d + xs.

}

(A32)

Note that there exist one, two, three or four real roots γ 

1 ,

γ 

2 , γ 


3 , γ 

4 if the quadrics QA(x) and QB(x) do intersect;

if the quadrics do not intersect, there is no real root.
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