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Abstract—This paper presents a simple and robust direct- voltage vector of the prediction which minimizes a pre-dadin

model predictive current control (DMPCC) scheme for surfaqe cost function is selected and applied in the next sampling
mounted permanent-magnet synchronous generators (PMSG8) jntarval. For 2-level power converters, 7 iterations foe th

variable-speed wind turbines (VSWTs). The proposed DMPCC t dicti d7 luati fth t functi
is based on computing the reference voltage vector (VV) directly current preaggaon an €valualions or the cost functios ar

from the demanded reference current using a deadbeat-like required to obtain the optimal VV. Hence, a powerful digital
function. Then, the location of this reference VV is identified signal processor (DSP) is essential to accommodate with the
based on its angle. Finally, a certain cost function is evaluated high computational load of the DMPC.

for only three times to get the optimal voltage vector to be pacently,‘some methods have been presented to reduce
applied in the next sampling instant. However, the proppsed this high computational load of the DMPC. In [14]-[17], a
DMPCC is a model-based control system, and accordingly, . : = !
sensitive to parameter variations of the PMSG. To mitigate modified DMPC for reducing the calculation load has been
such limitation, a simple observer is designed to enhance the proposed. The proposed strategy is based on calculating the
robustness of the proposed DMPCC scheme to variations of reference voltage vector (VV) directly from the reference
the PMSG parameters. The proposed DMPCC strategy has .rent ysing a deadbeat-like function and then evaluating
been experimentally implemented and its performance has been the cost function for all the candidates VWs (7 times for
compared with that of the conventional DMPCC. . o

Index Terms—Permanent-magnet synchronous - generator, 2-level power converter). This method has been modified
model predictive control, wind turbines, disturbance observer. in [18]-[20] by identifying the location of this referencewW
and accordingly, evaluating the cost function for only ¢hre
times. However, only simulation results have been presente
to validate the proposed method.

Compared with the doubly-fed induction generator [1], A well-known disadvantage of the model-based control
[2], the direct-drive permanent-magnet synchronous geoer schemes is its fragility against parameters uncertaififiéh
(PMSG) is more attractive, such as increasing the ener@y mitigate this problem, an extended Kalman filter (EKF) is
production, eliminating the gearbox, lowering maintereangroposed in [22], [23] to estimate the machine parametens. A
cost, and enhancing the low voltage ride through (LVRT9n-line estimation algorithm of the model parameters based
capability [3]. Generally, permanent-magnet synchronoas on least-square method (LSM) is presented in [24]. However,
chines (PMSMs) are controlled according to the field-ogdnt the high computational load of these on-line estimation al-
control (FOC) principles based on proportional-integrdfl) gorithms (i.e. EKF & LSM) is their main disadvantage. A
controllers [4], [5]. Those PI controllers give good steadyobust DMPC strategy, which is independent of the model
state control performance. However, their limited dynamigarameters, has been presented in [25]. This strategy luses t
performance and linear nature are commonly referred to sempled current differences, instead of the machine moalel,
their main drawbacks. predict the current gradient under each switching actiod, a

Currently, direct-model predictive control (DMPC), alsaccordingly, the sensitivity to parameter variations isided.
called finite control set-model predictive control (FCS-G)P However, high-performance current sensors (i.e. highst)co
is considered a promising and popular control scheme fare required. In [26], adding of the last prediction errofs o
power electronics and electrical drives because of itsebetthe previous switching state with a weighting factor to the
transient response in comparison with the linear cont®llepredicted currents from the machine model is proposed to
and the absence of a modulator [6]-[13]. DMPC uses a finitenhance the robustness of the FCS-MPC. However, tuning of
number of voltage vectors (VVs) and a discrete model the weighting factor is a time consuming process.
predict the future behavior of the system. Consequently, th In this paper, a computationally efficient direct-model-pre

I. INTRODUCTION



dictive current control (DMPCC) scheme for PMSGs is pre-

sented. The proposed DMPCC is based on the principles ﬁ’;‘
presented in [18], where the reference VV is directly calcu- @ [k+1]

lated based on the reference current and the cost function is sref >
evaluated for only three times to obtain the optimal voltage Cost > _|
vector. Furthermore, a simple observer is proposed to eehan i2Tk+1] Function 9

the robustness of the proposed DMPCC against variations of 7 >

the PMSG parameters. The proposed DMPCC and observer 4

have been experimentally implemented/validated and its pe Ll | s dq id
formance has been compared with that of the conventional x| Prediction| i
DMPCC. 7 Model | i? | /abc s |.¢

Il. MODELING OF THEPMSG

The continuous-time model of the PMSG in the rotating
reference framedg) can be written as follows [18], [27,
Chap. 14]

d d d -d . d Fig. 1. Conventional DMPCC for PMSGs.
Uy = Rsozs + LSOIZS - WrLsolg + Xs» }
Ug = Rsoig + Lso mlg + ersoig + wrwpmo + Xg,

Il. CONVENTIONAL DMPCC
where u¢, u?, i¢, i¢ are thed- and ¢g-axes components of
the stator voltage and current of the PMSG, respectily. The schematic diagram of the conventional DMPCC for
and L,, are the nominal values of the stator resistance aRMSGs is shown in Fig. 1. Generally, for the conventional
inductance of the PMSG, respectively, = nyw,, is the DMPC, the nominal parameters of the system are considered
electrical angular speed of the rotot,(is pole pair number to predict its future performance [18]. Hence, rearrandisig
andw,, is mechanical angular speed of the rotor) anhg,, and neglecting¢?[k], the prediction model can be written as
is the nominal value of the permanent-magnet flux linkagéllows
x¢ and x? represent the summations of disturbances due to

parameter variations and un-modeled uncertainties duetoiyh +1] =1 - fz“ flea)id[k] + wr[k}Ts?q[k] + LT udlk],
modeled dynamics. Both terms can be expressed as follo@i$k + 1] = (1 T— Lofteo )id (k] — wp [k] Toid [k] — S 4hpm
d
TS us [k].

x¢ = AR+ AL, Li? erLi + &4,

Sdts

5)
x§ =AR 1+ AL,L 1+ wr AL +w,A1/)pm + €2, } In this work, the cost function is defined by
(2)

where Ry = Ry, + ARy, Ly = Loy + ALg, Ypm = Vpmo + = i sk +1]—il[k+1]|+ i [k+1]—i[k+1]|, (6)
Ay, anded, €7 represent the un-modeled uncertainties for
the d- and g-axis, respectively. wherei¢ [k +1] andi! [k + 1] are the reference values

The DMPC relies on a discrete-time model of the PMSG #®f the d— & g—axis currents.
predict its future behavior for each switching vector. Appd Using the Seven different voltage vectors (VVs) shown in
the forward Euler method to the model in (1) and (2) gives tHgg. 2 @? 2Py of the two-level power converter and the
discrete model of the PMSG, which can be written as followgrediction model in (5), seven different values of the cutse
can be predicted. Then, the cost function is evaluated for

wllk] = Ryoil[k]+ Lsow — w, K] Lyoi?[K] each VV and the VV, which its prediction minimizes the cost
+x 4[], g function (6), will be applied at the next sampling period.
wllk] = Rogi®[k] + Lo z‘Z[k-i—lT]g—ig[k] Y, [K] Lo [K] The value of theg-axis reference current is computed

according to the maximum power point tracking (MPPT)
©) algorithm and thed-axis reference current is set to zero to
achieve the maximum torque per ampere (MTPA) [18], [28].

+w, [k] wpmo + Xg [k] 7l

K] = ARG AL, EFHUZER ) AT ek
s S T s

+ed[k], , 4 IV. PROPOSEDDMPCC
XUk = ARid[k] + ALSERUZEH o (K] ALi¢ K] _ _
o [k] Ay + £9[K], The concept of the conventional DMPCC is to select a VV
(4 da[] which makes the predicted currefit[k+1] close to its
wheref is the current sampling instant afitl is the sampling referencasqref [k+1]. Considering the predicted current in (5)
time (i.e.z[k] ~ x(kT,) for any quantity above). and taking into account?¢[k], the reference V\ufqm ¢[k] can
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Fig. 2. Proposed sector distribution for 2-level power @oter. Tlfq[k_n] T'@q[k_n] (/5%
be directly calculated by replacing the curréft[k + 1] with Fig. 3. Proposed DMPCC for PMSGs.
the reference valug? [k + 1] as follows
ul, K] = ReoidlK] + Lsow where n is @ positive integer. Using this assumption and
' —w, [k] Loid[k] + )Zf[k]: invoking (3), the values of“[k] and y¢[k] can be estimated

ul, fIk] = Ryoi?[k] + LSOM as
’ s k LSO 4 k r ks mo % k > > .

Fw k] Lsoi§ k] + wr [K]thpmo + X2[K], @ Xek] ~ x4k —n] =ul, sk —n] - (Rsozg[k —n]
where Y¢[k] and Y¢[k] are the estimated values of the sum-
mation of disturbances due to parameter variations and un-
modeled dynamics. .

HL,, bt llmitkon] o, (k] L[k — n})
; . . k] =~ xik —n]=u? _,[k—n]— | Reil[k —
Then, this reference voltage is transformed to the statjona X51H Xslk =] usv”'ef[ " (R ik =]

reference framey3 using the Park transformation. Therefore L, Bt ko] Tk — 0] Lyoidlk — 1)
its location can be identified as shown in Fig. 2. Its angle is :
given by twrlk — n]%m)
5 a (11)
dulk] = atan2(u . ¢ [k], ug e r[k])- (8) The proposed observer is simple and easy to implement.

However, the main drawback of this observer is the required
numerical differentiation of the measured current; thughh

gp = |U?,ref[k] _ u?[k]] + ‘uf,ref[k] D Uf[kH« ©) frequency _noise will b_e induced in the_ control Iqop, if not a

low pass filter (LPF) is employed to filter the signai§[k]

Based on the location of the reference Vi¢”, [k}, the six andx[k] and remove high frequency noise.
sectors are defined, which areillustrated in in Fig. 2. For
clarification, wheng, [k] € [0, %], then the reference VV is V1. EXPERIMENTAL RESULTS AND DISCUSSION
located in sectorl and the only reasonable candidate VVs
areu?ﬁg, ugfj, andujﬁ. Hence, (9) is evaluated for only threg,
times to obtain the optimal VV. The schematic diagram of thg,
conventional DMPCC for PMSGs is shown in Fig. 3.

The auxiliary cost function can now be expressed as

The proposed DMPCC technique has been experimentally
plemented and its performance has been compared with
at of the conventional DMPCC. The setup consists of a
14.5 kW PMSG driven by a two-level voltage source converter
(VSC). A 9.5kW reluctance synchronous machine (RSM)
driven by another two-level VSC is employed to emulate
The sensitivity of the proposed DMPCC technique to varidd€e variable-speed wind turbine dynamics and is controlled
tions of the PMSG parameters and un-modeled dynamics ¢#ing & nonlinear current Pl-based field-oriented confoIq)
be avoided by employing a simple observer. The proposi&#hnique [30]. The two machines (i.e. PMSG and RSM) are
observer is based on the time delay control approach [29]. §@upled through a torque sensor as illustrated in Fig. 4. The
estimate the values of?[k] andx“[k] in (3), it can be assumed Proposed DMPCC scheme for PMSG and the FOC system
that the values ofy?[k] and x4[k] at the present samplingfor RSM are implemented on a dSPACE DS1007 real-time
instantk are very close to those at a previous sampling instaiitform with MATLAB/Simulink and Control Desk software.
kL — n as follows The sampling frequency is set td kHz. The experimental
setup is depicted in Fig. 4. The parameters of the PMSG are
4k = XYk —n] and xI[k] = xi[k —n], (10) collected in Table I.

V. PROPOSEDDISTURBANCE OBSERVER



A: PMSG E: dSPACE DS1007

B: RSM F: Voltage source converters

C: Torque sensor G: Saftey-box and ON/OFF

D: Encoder H: Host computer

Time [s]
Fig. 4. Laboratory set-up to validate the proposed DMPCC. (a) Proposed DMPCC.
TABLE |
PMSGPARAMETERS
Name Symbol Value
Rated power Prated 14.5kW
Rated stator line-line voltage Usg rated 400V
DC-link voltage Ude 560V
Rated mechanical angular speedw,, rqted 157rad/s
Stator resistance Rs 0.15Q
Stator inductance Ls 3.4mH
Permanent-magnet flux linkage  ¥pm 0.3753 Wb
Pole pairs np 3
20 s s s s s s s
1 15 2 25 3 35 4 45 5
Time [s]
An incremental encoder wit2048 pulses per revolution (b) Conventional DMPCC.

(ppr) is used to measure the rotor pOSItIOﬂ of the PMS@ 5. Experimental results at step changes in ¢keis current of the
which is fed to dSPACE using a DS3002 incremental encodaysa.

board. Three current sensors and one voltage sensor are used
to measure the stator currents of the PMSG and the DC-
link voltage, respectively. The measured currents ancagelt the proposed DMPCC and the conventional one £610%
are handed over to dSPACE through a DS2004 analog Software step changes in the stator resistaicef the PMSG.
digital converter (A/D) board. For the design of the promgbselhe mechanical speed of the rotoy, is set to80rad/s by the
disturbance observer, in this work= 1 was selected. RSM control system and the referengexis current? . of
Fig. 5 shows the performance of the proposed DMPCC affte PMSG is set te-15 A. It can be seen from this figure that
the conventional one during step changes in the referencethe proposed DMPCC demonstrates better performance than
axis currenti? . of the PMSG. At the time instants=2s that of the conventional one.
andt = 4s, step changes in the referengexis current? ref Moreover, the performance of the proposed DMPCC is
of the PMSG from0 A to —25 A and then to—10 A have investigated under variations of the stator inductafgeof
been applied. The mechanical speed of the ratgris set to the PMSG. At the time instants= 1s andt = 3s, +50%
100rad/s by the RSM control system. It can be observed thand—50% increase/decrease in the stator inductahgef the
the dynamic performance of the proposed DMPCC (Fig. 5a)/®MSG have been applied. The mechanical speed of the rotor
similar to that of the conventional DMPCC (Fig. 5b). Howevew,,, is set to120rad/s by the RSM control system and the
the proposed DMPCC requires approximatélyus execution referenceg-axis currenti? ; of the PMSG is set to-10 A.
time, while, the conventional DMPCC requires approximatelAccording to Fig. 7, the performance of the proposed DMPC
27 s execution time. Hence, the computational load is reducétbetter than that of the conventional one. In contrast & th
to é? 100% =37% (i.e., a reduction by3%!). Furthermore, conventional one, only very small ripples appear in theenits
the steady-state performance of the proposed DMPCC igbeite and i¢ due to the inductance variation, but, the SSE is
than that of the conventional one. The steady-state er®E)S zero. In case of the conventional DMPCC, i@xis current
using the proposed DMPCC is zero, while, a non-zero SSEifssignificantly deviates from its reference vaItZe due to
observed using the conventional DMPCC. The reasons for thi variations of the stator inductante. Furthermore, higher
non-zero SSE are: (i) Parameter uncertainties and un-madelipples appear in the current$ and 4.
dynamics, and (ii) the lack of integral control action [31]. Finally, the performance of proposed DMPCC is tested
The robustness of the proposed DMPCC to variations ohder uncertainties in the permanent-magnet flux linkage.
the PMSG parameters is investigated and compared with théj. 8 illustrates the performance of the proposed DMPCC
of the conventional one. Fig. 6 illustrates the performaotte and the conventional one fat-50% software step changes
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Fig. 6. Experimental results at step changes in the statistaeseR; of Fig. 7. Experimental results at step changes in the statarctadceL, of
the PMSG. the PMSG.

in the permanent-magnet flux linkage,,,. The mechanical °Ne but with significantly reduced computational burden.
speed of the rotow,, is set to90rad/s by the RSM control Furthermore, steady-state response and the robustneks of t
system and the referengeaxis curreni? _, of the PMSG is proposed DMPCC are better than those of the conventional

set to—20 A. It can be observed that the proposed pmpcEMPCC.
is robust to variations of the permanent-magnet flux linkage ACKNOWLEDGMENT
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