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Abstract— This paper discusses systems theoretic and compu-
tational aspects of a feasible, but suboptimal, nonlinear model
predictive control scheme based on fixed sensitivities of the
functions representing the constraints and cost of the underly-
ing nonlinear programs. In particular, it will be shown how, by
freezing the sensitivities computed at the desired steady state of
the system, an efficient, structure-exploiting scheme is obtained
that can considerably speed up the computations required for
both construction and solution of the quadratic subproblems.
Moreover, the local stability properties of the converged solution
are analysed using results on pseudoexpansions of generalized
equations present in the literature. The effectiveness of the
proposed scheme is demonstrated on a non-trivial benchmark
where large speedups can be achieved.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) is an advanced
optimization-based control technique that requires one to
solve a series of neighbouring nonlinear programs (NLPs)
[16]. Due to the computational burden associated with the
solution of such problems, it has been historically primarily
used in the chemical and process industry. In fact, in these
fields, the typically slow dynamics of the systems to be
controlled allow for long sampling times within which it is
possible to carry out the required expensive operations.
During the last decade, considerable progress has been
made related to algorithms and software implementations
for NMPC that has significantly reduced its computational
footprint [6]. For example, applications in the fields of
automotive [2] and aerospace [19], [12] , where sampling
times are typically in the order of milli- and microseconds,
have been targeted successfully.
Among others, a way of speeding up the computations is
by using approximate formulations and inexact algorithms
at the price of slower convergence or suboptimality of the
obtained feedback policy. The schemes proposed in [5],
[7] and [14] use a limited number of iterations in order
to obtain an approximate solution. In [3], a variant of
the multi-level real-time iteration scheme is introduced that
uses fixed sensitivities in order to compute a feasible, but
suboptimal solution. In [20], the local stability properties of
the converged solution are analyzed in a simplified setting
in which the active-set is assumed to be fixed.
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A. Contributions and outline

In this paper, we further develop the results obtained in [20]
by extending stability results and proposing an efficient im-
plementation of the scheme. In particular, by formulating the
first-order optimality conditions of the NLP as a generalized
equation, a stability result based on a local approximation
of the Lyapunov function associated with the ideal setup
is derived. To this end, the so-called pseudoexpansion [4]
of the suboptimal solution is used in order to describe its
asymptotic behavior in a neighborhood of the steady state.
Although the idea is similar to the one used in [20], the main
difference lies in the fact that the analysis carried out based
on the framework of generalized equations allows one to
make statements that are valid even across active-set changes,
where an analysis based on Taylor series expansions would
fail.
A second and complementary contribution of this work is
an efficient structure-exploiting scheme that can significantly
reduce the computation times. The scheme is based on a
two-level algebraic elimination procedure that, starting from
the large and sparse direct collocation formulation, allows
one to solve lower dimensional quadratic programs (QPs).
First, the exact lifted integrators proposed in [15] which,
in this context, can be seen as a scheme to eliminate the
internal variables associated with implicit integrators, are
used to bring the linear systems into multiple-shooting form.
Secondly, a condensing procedure is used to eliminate the
state variables, such that a dense QP with fewer variables
needs to be solved. Due to the fact that the sensitivities are
kept constant, most computations needed for both elimination
procedures can be carried out offline. These computations in-
clude factorizations needed to solve the collocation equations
and the computation of the dense Hessian and its factoriza-
tion. The only computations left to be carried out online
consist in the evaluation of the (explicit) nonlinear functions
describing cost and constraints of the NLP, condensing and
expansions of right-hand sides and solution of the dense QP.
For the latter, efficient rank one updates can be exploited to
speed up the required computations [8].
The paper is structured as follows. In Section II, background
material and preliminaries are presented. In Section III, the
main theoretical result on the stability properties of the
scheme are derived. Section IV describes the implementation
details and, in Section V, numerical results based on an effi-
cient C code implementation of the algorithm are presented.



II. BACKGROUND AND PRELIMINARIES

A. Problem formulation and standard stability results

Consider the following NMPC formulation:

min
x0,...,xN

u0,...,uN−1

N−1∑
i=0

l(xi, ui) +m(xN )

s.t. x0 − x̄0 = 0,

ψ(xi, ui)− xi+1 = 0, i = 0, . . . , N − 1,

π(xi, ui) ≤ 0, i = 0, . . . , N − 1,

πN (xN ) ≤ 0,

(1)

where x ∈ Rnx and u ∈ Rnu represent states and controls.
The functions l(·) : Rnx × Rnu → R, and m(·) : Rnx → R
denote the stage and terminal costs respectively. The stage
and terminal constraint functions are denoted by π(·) : Rnx×
Rnu → Rnπ and πN (·) : Rnx → RnπN , while ψ(·) : Rnx ×
Rnu → Rnx describes the dynamics of the system. Finally,
x̄0 represents the initial state of the system.
In the following, we will report standard stability results
from [16] for the sake of completeness and clarity of the
derivations carried out in Section III.
To this end, let Z := {(x, u) |π(x, u) ≤ 0}, U(x) := {u ∈
Rnu | (x, u) ∈ Z}, X := {x ∈ Rnx |U(x) ̸= ∅} and Xf :=
{x ∈ X |πN (x) ≤ 0}. Moreover, let X̄ ⊆ X denote the set
containing all the x̄0 for which (1) has a solution. We require
the following assumptions to hold:
Assumption 1 (Continuity of system and cost): Assume
that the origin is a steady state with ψ(0, 0) = 0, l(0, 0) = 0
and m(0) = 0. Moreover, assume that l(·), m(·), ψ(·), π(·)
and πN (·) are continuous.
Assumption 2 (Properties of constraint sets): The set Z is
closed and the set U(x) is compact and uniformly bounded
in X. The set Xf ⊆ X is compact and each set contains the
origin.
Assumption 3 (Basic stability assumption): m(·), Xf and
l(·) satisfy the following properties:

1) For all x ∈ Xf , there exists a u†(x) (such that
(x, u†) ∈ Z) satisfying

ψ(x, u†) ∈ Xf ,

m(ψ(x, u†))−m(x) ≤ −l(x, u†).
2) There exist K∞ functions αl and αm such that

l(x, u) ≥ αl(∥x∥), ∀x ∈ X̄, ∀u such that (x, u) ∈ Z,
m(x) ≤ αm(∥x∥), ∀x ∈ Xf .

Assumption 4 (Weak controllability): There exists a K∞
function α(·) such that, for the optimal cost associated with
(1)

V ∗(x̄0) :=
N−1∑
i=0

l(x∗i , u
∗
i ) +m(x∗N ), (2)

the following holds:

V ∗(x) ≤ α(∥x∥),∀x ∈ X̄. (3)
Under the requirement that Assumptions 1, 2, 3 and 4 hold,
it can be shown that V ∗(x̄0) is a Lyapunov function for

the closed-loop system obtained by controlling the system
with the optimal feedback law u∗0(x̄0) in a receding horizon
fashion [16]:
Theorem 1 ([16], Theorem 2.19): Sup-
pose Assumptions 1, 2, 3 and 4 are satisfied. Then

1) There exist K∞ functions α1 and α2 such that

α1(∥x∥) ≤ V ∗(x) ≤ α2(∥x∥)
V ∗(ψ(x, u∗0(x)))− V ∗(x) ≤ −α1(∥x∥)

(4)

for all x ∈ X̄.
2) The origin of the closed-loop system is asymptotically

stable in X̄.
We will make the additional assumption that αl(·) is a
quadratic function:
Assumption 5: There exists β > 0 such that

l(x, u) ≥ β ∥x∥2 , ∀x ∈ X̄,∀u such that (x, u) ∈ Z. (5)

III. STABILITY OF ZERO-ORDER NMPC

In order to simplify the following derivations, the case where
l(·) and m(·) are quadratic functions will be considered and
the NMPC problem (1) will be rewritten in compact form:

min
y

1

2
yTDy

s.t. g(y) + Cx̄0 = 0,

h(y) ≤ 0,

(6)

where y ∈ Rny and the functions g(·) : Rny → Rng and
h(·) : Rny → Rnh are in addition assumed to be twice
continuously differentiable.
We are interested in computing a solution of (6) for a given
value of the parameter x̄0 by solving a series of quadratic
programs (QPs) of the form

min
∆y

aTk∆y +
1

2
∆yTD∆y

s.t. g(y[k]) +G∆y + Cx̄0 = 0,

h(y[k]) +H∆y ≤ 0,

(7)

with ∆y := y − y[k], where y[k] denotes the current value
of the primal variables at iteration k. In the following, the
stability properties of an inexact scheme will be analyzed. In
particular, the algorithm uses only “zero-order” information,
in the sense that it does not require the online evaluation
of first- and second-order derivatives. Namely, the following
approximations will be used:

ak := Dy[k], G :=
∂g

∂y
(0),

H :=
∂h

∂y
(0), D := ∇2

yL(0, 0, 0, 0),

(8)

where

L(y, λ, µ, x̄0) :=
1

2
yTDy+λT (g(y)+Cx̄0)+µ

Th(y) (9)

is the Lagrangian of (6) and D is assumed to be positive-
definite. It is assumed that for x̄0 = 0 the solution to (6) is
y = 0, λ = 0 and µ = 0.



If convergence is achieved, i.e. ỹ := y[k+1] = y[k], λ̃ :=
λ[k+1] = λ[k] and µ̃ := µ[k+1] = µ[k], from the first-order
optimality conditions of the QPs, we obtain

Dỹ +GT λ̃+HT µ̃ = 0,

g(ỹ) + Cx̄0 = 0,

h(ỹ) ≤ 0,

hi(ỹ)µ̃i = 0, i = 0, . . . , nh − 1,

(10)

which can be interpreted as the first-order optimality condi-
tions of the nonlinear program [3]

min
y

1

2
yTDy + ξ(x̄0)

T y

s.t. g(y) + Cx̄0 = 0,

h(y) ≤ 0,

(11)

with

ξ(x̄0) :=
(
GT −∇g(ỹ(x̄0))

)
λ̃(x̄0) +(

HT −∇h(ỹ(x̄0))
)
µ̃(x̄0).

The local convergence of the algorithm has been analyzed
in [3] based on an adaptation of standard arguments for
Newton-type algorithms.
Remark: although we will focus in the following on the algo-
rithm with fixed sensitivities described above, in a practical
implementation it is possible in principle to update them in
an asynchronous fashion as proposed in [3] in order to cope,
for example, with changes in the reference.

A. Solution pseudoexpansion

In order to quantify the magnitude of the deviation of the
solution ỹ to the approximate NLP (11) from the optimal
solution y∗ to the original NLP in (6), it is possible to use
an approximation of the solutions of problems (6) and (11)
[4]. To this end, we will rewrite the optimality system of (6)
as a generalized equation.
Definition 2: Let the generalized equation

F (z, x̄0) ∈ N(z), (12)

represent the optimality system of (6), where

F :=

(
∇yL(y, ν, x̄0)
ḡ(y) + C̄x̄0

)
(13)

with z := (y, ν), ν := (λ, µ), C̄ := [CT 0]T , ḡ(y) :=
(g(y), h(y)) and N := {0} ×N−1

K , where

N−1
K (ν) :=

{
v ∈ K : ⟨ν, v⟩ = 0, if ν ∈ K−

∅, otherwise
(14)

and K− := Rng × Rnh
+ is used to denote the polar cone of

the set K := {0} × Rnh
− .

It is possible to approximate the solution z(x̄0) by z0 +
z1(x̄0), which we will call a pseudoexpansion [4], where z0

denotes the unperturbed solution z(0) and z1(x̄0) represents
the solution to the generalized equation (with unknown ζ)

F (z0, 0) +∇zF (z
0, 0)T ζ +∇x̄0F (z

0, 0)T x̄0 ∈ N(z0 + ζ).
(15)

Definition 3: Let, for x̄0 = 0, z0 be a solution of the
generalized equation (12). We say that the strong stability
conditions hold (that z0 is strongly stable) if there exist ϵ > 0
and M > 0 such that for all v ∈ BV (0, ϵ) the linearized
generalized equation

F (z0, 0) +∇zF (z
0, 0)T ζ + v ∈ N(z0 + ζ) (16)

has in BZ(0,M) a unique solution ẑ(v) and

ẑ(·) : BV (0, ϵ)→ BZ(0,M) (17)

is Lipschitz continuous, where

BX(x, r) = {x′ ∈ X : ∥x− x′∥ < r} (18)

is used to denote the open ball of radius r > 0 centered at
x.
We will assume in the following that strong stability condi-
tions hold for z0.
Assumption 6: The solution z(x̄0) of (12) is strongly stable
for all x̄0 in P , with 0 ∈ P .
In particular, the following theorem [4, Theorem 5.1] will be
useful to derive results on the suboptimality of the solution
ỹ.
Theorem 4: Suppose that, for x̄0 = 0, z0 is a solution of
the generalized equation (12) and that strong stability holds.
Then, for all x̄0 in a neighborhood of 0, the mappings
z(x̄0) and z1(x̄0) are well defined in the vicinity of z0 and
in BZ(0,M), respectively. In addition, z(x̄0) is Lipschitz
continuous:

z1(x̄0) = O (∥x̄0∥) (19)

and the following holds:

z(x̄0) = z0 + z1(x̄0) + o (∥x̄0∥) . (20)
Assumption 7: Let the generalized equation

F̃ (z, x̄0) ∈ N(z), (21)

represent the optimality system associated with (11) and let
z̃(x̄0) denote a solution of (21). Assume that, for all x̄0 in
P , z̃(x̄0) is strongly stable.
Proposition 5: Regard problem (11) and let Assumption 7
hold. Then, the following holds:

ξ(x̄0) = O
(
∥x̄0∥2

)
. (22)

Proof: Due to Assumption 7, and given that z̃0 = 0,
ν̃ = O (∥x̄0∥) and ỹ = O (∥x̄0∥). Moreover, since GT −
∇g(ỹ(x̄0)) = O (∥x̄0∥) and HT −∇h(ỹ(x̄0)) = O (∥x̄0∥),
then ξ(x̄0) = O(∥x̄0∥2).

Consider now the following parametrization of problem (11):

min
y

1

2
yTDy + ξT y

s.t. g(y) + Cx̄0 = 0,

h(y) ≤ 0,

(23)

where ξ is regarded as a parameter.



Proposition 6: Let Assumption 7 hold. Then, for every x̄0
in P , the following holds:

z(x̄0)− z̃(ξ, x̄0) = O (∥ξ∥) . (24)

Proof: The result is a direct consequence of the
facts that z̃(0, x̄0) = z(x̄0) and that, due to Theorem 4,
z̃1(ξ, x̄0) = O (∥ξ∥) for all x̄0 in P .

Lemma 7: Let Assumptions 6 and 7 hold. Then

z(x̄0)− z̃(x̄0) = O
(
∥x̄0∥2

)
. (25)

Proof: The result is a direct consequence of Proposi-
tions 5 and 6.

Lemma 8: Let Assumptions 6 and 7 hold. Then, the follow-
ing holds:

1

2
y∗(x̄0)

TDy∗(x̄0)−
1

2
ỹ(x̄0)

TDỹ(x̄0) = O
(
∥x̄0∥4

)
. (26)

Proof: In the following regard ỹ = ỹ(x̄0), y∗ = y∗(x̄0)
and ξ = ξ(x̄0). Given that ỹ is a minimizer for (11), it holds
that

1

2
ỹTDỹ + ξT ỹ ≤ 1

2
yTDy + ξT y,

for any feasible y in BY (ỹ, σ) for some σ > 0 and, in
particular, for ∥x̄0∥ sufficiently small, we can write

1

2
ỹTDỹ − 1

2
y∗TDy∗ ≤ ξT (y∗ − ỹ).

Moreover, due to Proposition 5 and Lemma 7, we have that
ξ(x̄0) = O

(
∥x̄0∥2

)
and y∗(x̄0) − ỹ(x̄0) = O

(
∥x̄0∥2

)
,

which implies that

1

2
ỹTDỹ − 1

2
y∗TDy∗ = O

(
∥x̄0∥4

)
. (27)

B. Lyapunov function for the Zero-Order scheme

The results stated in Lemma 8 can be used to establish local
stability guarantees for the Zero-Order NMPC scheme under
analysis.
Theorem 9: Let all the above Assumptions hold. Then, the
origin is a locally exponentially stable equilibrium for the
closed-loop system obtained by applying the suboptimal
policy ũ0(x̄0).

Proof: Let Ṽ (x̄0) := 1
2 ỹ(x̄0)

TDỹ(x̄0). Due to As-
sumption 3, we can write the following:

Ṽ (x̄0) ≥β∥x̄0∥2 + V̂N−1(ψ(x̄0, ũ(x̄0))

≥β∥x̄0∥2 + V̂N−1(ψ(x̄0, ũ(x̄0))

−m(x̃N ) +m(ψ(x̃N , u
†(x̃N ))) + l(x̃N , u

†(x̃N ))

≥β∥x̄0∥2 + V ∗(ψ(x̄0, ũ(x̄0)),

where

V̂N−1(ψ(x̄0, ũ0)) :=
N−1∑
i=1

l(x̃i, ũi) +m(x̃N ). (28)

Finally, applying (26), we have that

Ṽ (ψ(x̄0, ũ(x̄0)))− Ṽ (x̄0) ≤ −β∥x̄0∥2 +O
(
∥x̄0∥4

)
,

which shows that a positive definite function α̃ must exist
such that

Ṽ (ψ(x̄0, ũ(x̄0)))− Ṽ (x̄0) ≤ −α̃(∥x̄0∥) (29)

holds in a neighborhood of the origin.

IV. IMPLEMENTATION DETAILS

In this section, the implementation details of the proposed
algorithm are presented. In particular, the iterations (7) will
be specialized to the structure obtained by using the direct
collocation discretization scheme and an efficient elimination
strategy based on lifted integrators [15] and the condensing
routines proposed in [9] will be described. The main un-
derlying idea is that, due to the fact that the sensitivities are
being frozen according to (8), several computations that need
in general to be carried out online can be performed offline.
Remark: although in some cases it might be more compu-
tationally efficient to use explicit integrators, the two-level
elimination strategy will be described for the case where
implicit integrators are used to discretize the continuous-
time dynamics. This is done on purpose, since the proposed
algorithm can significantly speed up the computations asso-
ciated with the solution of implicit collocation equations as
well.

A. Two-level algebraic elimination

Consider the following discrete-time optimal control problem
in direct collocation form:

min
x,u,v

N−1∑
i=0

l(xi, ui) +m(xN )

s.t. x0 − x̄0 = 0,

ϕ(wi, vi) = 0, i = 0, . . . , N − 1,

xi + Cvi − xi+1 = 0, i = 0, . . . , N − 1,

π(xi, ui) ≤ 0, i = 0, . . . , N − 1,

πN (xN ) ≤ 0,

(30)

where x ∈ Rnx , u ∈ Rnu and v ∈ Rnv are the states,
controls and collocation variables, respectively, and wi :=
[xTi , u

T
i ]

T . The equation ϕ(wi, vi) = 0 represents the collo-
cation equations

ϕ(wi, vi) :=

ψc(v
1
i , xi + Tint

∑q
s=1 a1,sv

s
i , ui)

...
ψc(v

q
i , xi + Tint

∑q
s=1 aq,sv

s
i , ui)

 (31)

associated with stage i, where q denotes the number of collo-
cation nodes and the scalars ai,j with i, j = 1, . . . , q are the
coefficients of the collocation method. The integration step
size is represented by Tint and C in (30) is a constant matrix
that depends on Tint and the collocation nodes. The function



Algorithm 1 Level-1 Elimination: Lifted Integrators

input: current iterates w[k], v[k]

output: updated iterates w[k+1], v[k+1]

1: L1-Condensing procedure
2: for i = 0, . . . , N − 1 do
3: ∆ṽi ←M−1ϕ(w

[k]
i , v

[k]
i ),

4: c̄i ← x
[k]
i + Cv

[k]
i − x

[k]
i+1 + C∆ṽi

5: end for
6: QP solution (Algorithm 2)
7: w[k+1] ← w[k] +∆w
8: L1-Expansion procedure
9: for i = 0, . . . , N − 1 do

10: v
[k+1]
i ← v

[k]
i +∆ṽi + V∆wi

11: end for

ψc in (31) characterizes the fully implicit continuous-time
dynamics

0 = ψc(ẋ(t), x(t), ū). (32)

Remark: as described in [15], the presented algorithm can
be easily extended to the case where a differential-algebraic
equation describes the dynamics, and to the case where
more than one intermediate integration step is carried out
per shooting node. For the sake of brevity, we will restrict
ourselves to the slightly less general formulation (30)-(31).
The proposed algorithm solves, at every iteration, QP sub-
problems of the form

min
∆x0,...,∆xN

∆u0,...,∆uN−1

N−1∑
i=0

fw(∆wi) + fxN
(∆xN )

s.t. x0 − x̄0 = 0,

gi(∆wi,∆xi+1) = 0, i = 0, . . . , N − 1,

hi(∆wi) ≤ 0, i = 0, . . . , N − 1,

hN (∆xN ) ≤ 0,
(33)

where

fw(∆wi) :=
1

2
∆wT

i Q∆wi + qTi ∆wi,

fxN
(∆xN ) :=

1

2
∆xTNQN∆xN + qTN∆xN

(34)

and

gi(∆wi,∆xi+1) := A∆xi +B∆ui −∆xi+1 + c̄i.

Moreover
hi(∆wi) := H∆wi + h̄i,

hN (∆xN ) := HN∆xN + h̄N .
(35)

The matrices and vectors in the QP subproblem (33) are all
fixed and precomputed offline apart from c̄i, h̄i and h̄N ,
which need to be updated online. In particular, they are
defined as evaluations of first- and second-order derivatives
at the steady state (primal and dual) solution of the following
quantities:

Q := ∇2
wl, QN := ∇2

xm,

qi := ∇wl +Qw
[k]
i , qN := ∇xm+QNx

[k]
N ,

(36)

Algorithm 2 Level-2 Elimination: States Condensing

input: current iterates w[k] and QP data c̄i, h̄i for i =
0, . . . , N − 1 and h̄N
output: primal step ∆w

1: L2-Condensing procedure
2: update condensed QP ([11] - Algorithms 6, 8, 14)
3: Condensed QP solution
4: compute ∆u
5: L2-Expansion procedure
6: compute ∆x ([11] - Equation 9.1)

Fig. 1: Nonlinear hanging chain benchmark for nm = 5
masses [13]. The dashed sketch describes the equilibrium at
which the fixed quantities used by Algorithm 1 and 2 are
computed.
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and
A := I + CVx, B := CVu, (37)

where

Vx := −∂ϕ
∂v

−1 ∂ϕ

∂x
, Vu := −∂ϕ

∂v

−1 ∂ϕ

∂u
, V := [Vx, Vu].

Moreover, the matrix M−1 in Algorithm 1 is defined as

M−1 := −∂ϕ
∂v

−1

. (38)

Finally,

H :=
∂π

∂w
, HN :=

∂πN
∂x

. (39)

While the terms c̄i, i = 0, . . . , N − 1 are being updated
using Algorithm 1, the terms h̄i, i = 0, . . . , N − 1 and h̄N
are computed by evaluating the constraint functions at the
current iterates:

h̄i := π(x
[k]
i , u

[k]
i ), i = 0, . . . , N − 1, h̄N := πN (x

[k]
N ).

After problem (33) is formed through steps 1 − 5 of Algo-
rithm 1, a (states) condensing routine is used to update a
condensed QP whose solution delivers the Newton step in
the input variables ∆u as described in Algorithm 2. Notice
that, since the QP matrices in (33) are constant throughout
the iterations, the step 5 of Algorithm 2, only involves
the update of gradients and right-hand sides resulting in a
tailored condensing routine that is significantly cheaper than
the standard implementation.



N 10 10 10 20 20 20 30 30 30
nm 5 6 7 5 6 7 5 6 7
ns 2 4 6 2 4 6 2 4 6
RTI 1.20 4.65 19.96 2.54 9.97 40.41 4.80 16.04 61.41
0-RTI 0.43 0.44 0.94 0.81 1.32 2.34 1.84 2.65 4.23
speedup 2.79 10.56 21.37 3.13 7.55 17.27 2.61 6.05 14.52

TABLE I: Closed-loop worst-case computation time, in mil-
liseconds, for the standard (RTI) and Zero-Order (0-RTI)
real-time iteration schemes for different prediction horizons
N , number of masses nm and number of stages for the
collocation integrators ns. In all simulations the system is
steered to steady state. Using the 0-RTI scheme, a maximum
increase of less than 0.1% in the closed-loop cost is incurred
with respect to the standard RTI.

V. NUMERICAL RESULTS

The Zero-Order scheme described in Algorithms 1 and
2 has been implemented in C within the framework for
nonlinear embedded optimization acados [17] using the
high-performance linear algebra library BLASFEO [10]. The
QP solver qpOASES [8] is used in order to exploit hot-
starting of its active-set strategy and avoid the necessity of
factorizing the condensed Hessian at every iteration. The
efficient condensing routines implemented in HPIPM [1] are
used in order to carry out steps 1 and 5 in Algorithm 2. In
the following, a numerical case-study based on a scalable
example is presented where it is shown how considerable
speedups can be achieved. All benchmarks are run on a
Dell XPS13-9360 equipped with an Intel i7-7560U with
maximum and minimum frequency set to the nominal value
of 2.40 GHz.
Remark: although the theoretical results derived in Sec-
tion III are related to the converged solution associated with
problem (11), in this section a real-time implementation of
the algorithm will be considered which requires the solution
of a single QP per sampling time as usually done in practice
when using RTIs [5]. An extension of the systems theoretic
results is subject of undergoing research.

A. Nonlinear hanging chain - Timings

The system as presented in [18] and [8] consists in a
hanging chain of masses connected by springs described by
a differential equation with nx = 6(nm−2)+3 states, where
nm represents the number of masses in the chain. The chain
is controlled by adjusting the velocities of the mass at one
of its ends resulting in nu = 3 controls, while the opposite
end is fixed. Figure 1 shows a sketch of the system under
consideration.
Following the notation in (30), a tracking formulation with

l =
1

2
(x− xss)

TQ(x− xss) +
1

2
(u− uss)

TR(u− uss) (40)

and

m =
1

2
(x− xss)

TQN (x− xss) (41)
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Fig. 2: Open-loop trajectories obtained with the original
(solid), Zero-Order (dotted) and linear-quadratic (dashed)
formulations. An additional constraint is added to the prob-
lem used in [18] that requires the position of the actuated
mass to be within a ball. Although the Zero-Order scheme
is clearly suboptimal, the obtained trajectories satisfy the
nonlinear constraint (unlike with the linear-quadratic formu-
lation).

will be used, where Q = QN = 100 · Inx and R = Inu .
Double-sided box constraints are imposed on the inputs
umin ≤ u ≤ umax and single-sided constraints for the states
xmin ≤ x are included that represent the wall on the side
of the chain. Implicit lifted collocation integrators [15] of
type Gauss-Legendre with order 2ns are used to discretize
the dynamics of the system.
Table I shows the worst-case CPU time in milliseconds
obtained in a closed-loop simulation using the standard
(RTI) and the proposed (0-RTI) real-time iteration schemes.
Especially for large number of masses nm and number of
stages of the collocation integrators ns, a large speedup can
be achieved with respect to the standard scheme. For these
benchmarks, the maximum increase in the closed-loop cost
with respect to the standard RTI is below 0.1%.

B. Nonlinear hanging chain - Control performance

In order to show the benefit in terms of control performance
of the proposed scheme, a slight adaptation of the original
formulation used in [18] will be taken into account. In
particular, a convex quadratic constraint that requires the
position of the actuated mass to be within a ball of a fixed
radius ρ̄ centered around p̄ is introduced:

∥p− p̄∥22 − ρ̄
2 ≤ 0, (42)

where p represents the position of the actuated mass.
Figure 2 shows the open-loop trajectories obtained by solving
the exact NLP, the approximate Zero-Order and the linear-
quadratic formulations obtained by using the required fixed
quantities computed at the steady-state. Although the Zero-
Order trajectories are clearly suboptimal, the advantage over
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Fig. 3: Asymptotic suboptimality of Zero-Order and linear-
quadratic formulations in open-loop as a function of the de-
viation of x0 from the steady-state. The Zero-Order scheme
provides a superior approximation of the optimal cost.

the linear-quadratic formulation is evident due to the fact
that the additional nonlinear constraint (42) can be satisfied
when using the proposed approach.
Finally, in order to illustrate the superior asymptotic approx-
imation of the optimal cost, Figure 3 shows the deviation of
the open-loop costs obtained with the Zero-Order and linear-
quadratic formulations.

VI. CONCLUSIONS AND OUTLOOK

In this paper, an efficient NMPC scheme that uses frozen
sensitivities is presented. Both systems theoretic and compu-
tational aspects are discussed and an efficient implementation
in C is provided that can achieve speedups of more than one
order of magnitude with respect to state-of-the-art algorithms
and implementations.
The stabilizing properties of the converged solution are
analyzed and a local Lyapunov function is constructed using
results from the field of generalized equations.
An extension of the stability proof to the real-time variant
of the scheme is subject of undergoing research.
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