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Abstract: In this paper, an inexact nonlinear model predictive control scheme with reduced
computational complexity is proposed. The presented approach exploits fixed sensitivity
information precomputed offline at a reference value. This allows one to avoid the online
computational effort resulting from the propagation of sensitivities and possibly the correspond-
ing condensing routine when solving the optimal control problem with a sequential quadratic
programming method. By performing a numerical simulation of the nonlinear dynamics online,
feasibility of the closed-loop trajectories can be preserved in contrast to linear model predictive
control schemes. Nominal stability guarantees of the approach are derived and the effectiveness
of the scheme is demonstrated on a non-trivial example.
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1. INTRODUCTION

Schemes based on Nonlinear Model Predictive Control
(NMPC) can be a useful tool to control a large class of
systems (Qin and Badgwell, 2000). Due to their inherent
flexibility, nonlinear dynamics, constraints and objectives
can be tackled directly allowing one to naturally translate
design requirements into mathematical statements with-
out the need for ad-hoc reformulations. Moreover, exten-
sive results exist in the literature that guarantee nominal
and robust stability under reasonable assumptions (Mayne
et al., 2000). Due to the high computational burden
associated with the solution of the nonlinear and in general
nonconvex Optimal Control Problems (OCP), NMPC has
been historically employed mainly in the chemical indus-
try, where the sampling times are generally long enough
(Garćıa et al., 1989; Qin and Badgwell, 2003).

As more and more efficient numerical methods are being
developed and as the computational power available on
embedded systems increases, NMPC is becoming a viable
way for a broader spectrum of systems. Promising results
have been reported for applications in automotive (Frasch
et al., 2013), renewable energy (Ferreau et al., 2011) and
robotics (Diehl et al., 2006), where sampling times in the
millisecond time-scale need to be met.

In this work, motivated by these considerations, an ap-
proximate scheme with reduced computational complexity
is analyzed and its stability properties are investigated.
In the setup considered, the optimal control problem is
? This research was supported by the EU via ERC-HIGHWIND
(259 166), FP7-ITN-TEMPO (607 957), and H2020-ITN-AWESCO
(642 682). R. Quirynen holds a PhD fellowship of the Research
Foundation – Flanders (FWO).

solved with the direct multiple shooting method using a
Sequential Quadratic Programming (SQP) scheme (Bock
and Plitt, 1984). In contrast with exact schemes, fixed sen-
sitivities are used in the convex Quadratic Problems (QP)
arising in each iteration. In this way, the subproblems
can be pre-condensed offline and a cheap online update of
the nonlinear constraints is performed in order to recover
a feasible, but suboptimal solution as proposed in (Bock
et al., 2007). In this last work, the pre-condensed QP is
used as a building block of a more articulated scheme, the
so called multilevel real-time iteration algorithm.

1.1 Contribution and Outline

In this paper, the inexact NMPC scheme introduced in
(Bock et al., 2007) is regarded as a standalone algorithm
and its stability properties are investigated. In particular,
a sensitivity analysis of the suboptimal solution is derived
for the inexact scheme. It is shown that the cost of the
optimization problem can be used as a Lyapunov function
in a neighbourhood of the reference equilibrium, such that
stability can be guaranteed. With respect to other inexact
approaches based on a fixed linearization of nonlinear
constraints (De Nicolao et al., 2000), the proposed scheme
has the advantage of guaranteeing recursive feasibility of
the suboptimal solution.

The theoretical statements are then illustrated on a non-
trivial numerical example. The inexact scheme is com-
pared with a second approach that uses instead exact
derivatives. Despite the potentially large suboptimality
of the inexact scheme, it is shown that the condition
necessary to obtain stability guarantees hold in a non-
negligible neighbourhood of the reference.
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The paper is organized as follows: Section 2 briefly sum-
marizes the main ideas and concepts that will be used
to derive the stability proof. The inexact SQP scheme
is introduced and a standard nominal stability argument
for NMPC is recalled. In Section 3 the main results are
presented. The sensitivity of the cost associated with the
suboptimal trajectories with respect to the initial condi-
tion is derived and used to build a Lyapunov function.
Finally, Section 4 contains an illustrative example in which
the inexact scheme is applied to a nonlinear dynamical
system in order to validate the theoretical results.

2. PRELIMINARIES

In the following, the optimal control problem formulation
and the inexact scheme are introduced. Moreover, a
standard nominal stability argument for NMPC is recalled
as the stability proof for the inexact scheme will be built
on it.

2.1 Optimal Control Problem Statement

Consider the following finite-horizon discrete-time optimal
control problem:

V ∗(x̄0) = min
x0,··· ,xN
u0,··· ,uN−1

1

2

N−1∑
i=0

(
xTi Qxi + uTi Rui

)
s.t. x0 − x̄0 = 0

xi+1 = f(xi, ui), i ∈ I
xN = 0,

(1)

with optimization variables xi ∈ Rnx and ui ∈ Rnu ,
positive definite cost matrices Q ∈ Snx

++ and R ∈ Snu
++ and

I := {0, · · · , N −1}. Without loss of generality, the origin
is considered as the reference equilibrium, i.e f (0, 0) = 0.
Such a formulation can be obtained from a continuous-
time problem by applying the direct multiple shooting
method (Bock and Plitt, 1984). In this work, an OCP
formulation with a zero terminal constraint and without
inequality constraints is considered in order to simplify the
derivation of stability guarantees for the inexact scheme.
Similar arguments could be used to extend the proof to
a more general OCP formulation without zero terminal
constraints and with inequality constraints.

Problem (1) can be reliably and efficiently solved online
in an embedded setting with state-of-the-art solvers for
NMPC (Diehl et al., 2009). While other approaches exist,
a possible way of doing so is by exploiting an SQP scheme
that solves a series of convex Quadratic Programs (QP)
that locally approximate the original problem. In the next
section, the main idea behind such a method is briefly
recalled and the modifications that lead to the proposed
inexact approach are introduced.

Throughout this paper the following assumption will be
made.

Assumption 1. There exists a local minimizer that satis-
fies Linear Independence Constraint Qualification (LICQ)
and Second Order Sufficient Conditions (SOSC) of opti-
mality (Nocedal and Wright, 2006) for the OCP in (1) for
any x̄0 in a non-empty neighbourhood Ω of the origin.

2.2 The Inexact Scheme

If the Nonlinear Program (NLP) in (1) is solved with a
Gauss-Newton SQP scheme (Bock, 1983), the resulting
subproblem at iteration k takes the form

min
x0,··· ,xN
u0,··· ,uN−1

1

2

N−1∑
i=0

(
xTi Qxi + uTi Rui

)
s.t. x0 − x̄0 = 0

xi+1 = Aki xi +Bki ui + cki , i ∈ I
xN = 0,

(2)

where

cki = f(xki , u
k
i )−Aki xki −Bki uki ,

with dynamics linearized around the current estimate of
the solution xk := (xk0 , . . . , x

k
N ) and uk := (uk0 , . . . , u

k
N−1):

Aki =
∂f

∂x
(xki , u

k
i ), Bki =

∂f

∂u
(xki , u

k
i ).

If the solution of the above QP is taken as next solution
guess

(
xk+1, uk+1

)
, it can be shown that such a scheme,

together with an appropriate globalization strategy (Han,
1977), is guaranteed to recover a local minimum of (1).

A possible way of solving the subproblems in (2) is by
eliminating the state variables x resulting in a smaller
and dense problem that can be efficiently solved by state-
of-the-art QP solvers (Ferreau et al., 2014). However,
the computational burden introduced by the so called
condensing (Bock, 1983) can be rather high, especially
for problems with a long prediction horizon N or a large
number of states (Vukov et al., 2013). A second source
of computational effort, regardless of the QP formulation
used, is the fact that the matrices Aki and Bki need to be
computed at every iteration. Numerical results that take
into account the recent advances in both integration and
condensing routines show that the latter can be rather
computationally expensive (Quirynen et al., 2013).

The main motivation behind an inexact scheme that ex-
ploits fixed derivatives is to avoid the computational bur-
den associated with condensing and sensitivity generation
by using the Jacobians evaluated at the reference:

Aki = A =
∂f

∂x
(0, 0), Bki = B =

∂f

∂u
(0, 0).

A convergence proof of such an SQP scheme to a feasible,
but suboptimal solution can be found in (Bock et al.,
2007). Using fixed derivatives will allow one to avoid sen-
sitivity generation and condensing routines while solving
the optimal control problem online, hence reducing the
cost of the overall scheme to the one associated with a
pre-condensed QP solve and a numerical simulation of the
dynamics needed to update the terms cki in (2).

2.3 Standard Nominal Stability Argument

Classical nominal and robust stability results hold for the
system controlled using the optimal solution of the NLP in
(1) in a receding horizon fashion (Scokaert et al., 1997). In
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the following, a common argument used to derive stability
guarantees based on Lyapunov functions is reported.

Consider the following result adapted from (Scokaert et al.,
1997):

Theorem 2. Let F : Rnx → Rnx be the function that
describes the dynamics of the closed-loop system and let
F satisfy a Lipschitz condition in an open neighbourhood
of the origin, with F (0) = 0. The origin is a locally
exponentially stable fixed point of xk+1 = F (xk), if there
exist a function U(xk) and strictly positive constants a, b,
c and ρ such that, for all xk ∈ Bρ, with Bρ := {x ∈ Rn :
‖x‖ ≤ ρ}, the following holds:

a ‖xk‖2 ≤ U(xk) ≤ b ‖xk‖2

U(F (xk))− U(xk) ≤ −c ‖xk‖2 .

It is possible to show that the optimal cost in (1) is a valid
Lyapunov function for the system controlled by applying
the optimal input in a receding horizon fashion. To this
end, let V ∗(xk) denote the optimal cost associated with
problem (1) for x̄0 = xk. Then, due to positive definiteness
of Q and R, it immediately follows that there exists a
constant a ≥ 0 such that

V ∗(xk) ≥ a ‖xk‖22 .

Consider the control profile u∗(xk) obtained by solving
problem (1) with x̄0 = xk. As the optimal solution satisfies
x∗N = 0, a feasible solution to problem (1) formulated with
x̄0 = xk+1 = f(xk, u

∗
0(xk)) can be obtained by replaying

the controls computed at time k:

û :=
(
u∗1(xk), u∗2(xk), · · · , u∗N−1(xk), 0

)
,

which would give rise to a feasible and suboptimal solution
of (1) with cost

V ∗(xk)− xTkQxk − u∗0(xk)TRu∗0(xk).

The optimal cost V ∗(xk+1) can only be better than this,
thus:

V ∗(xk+1)− V ∗(xk) ≤ −xTkQxk − u∗0(xk)TRu∗0(xk),

or, equivalently, there exists a constant c such that

V ∗(xk+1)− V ∗(xk) ≤ −c ‖xk‖22 , ∀xk ∈ Bρ.

Finally, Assumption 1 can be used to derive an appropriate
constant b > 0. The proof is not reported here for brevity
and the interested reader is referred to (Scokaert et al.,
1997) for a detailed discussion.

3. STABILITY OF THE INEXACT NMPC SCHEME

In the following, a sensitivity analysis of the solution
recovered by the inexact scheme will be derived. In
order to do so, regard the first order optimality conditions
(Nocedal and Wright, 2006) for the QP subproblem (2) at
iteration k, with fixed derivatives A and B:

x0 − x̄0 = 0

Qx0 +ATλ1 − λ0 = 0

Ru0 +BTλ1 = 0

x1 − f(xk0 , u
k
0)−A(x0 − xk0)−B(u0 − uk0) = 0

...
...

xN = 0

− λN − λt = 0.

(3)

where λ0, · · · , λN , λt are the Lagrange multipliers asso-
ciated with the equality constraints. When convergence
is achieved xk+1

i = xki := x̃i, u
k+1
i = uki := ũi and

λk+1
i = λki := λ̃i and the following holds:

x̃0 − x̄0 = 0

Qx̃0 +AT λ̃1 − λ̃0 = 0

Rũ0 +BT λ̃1 = 0

x̃1 − f(x̃0, ũ0) = 0

...
...

x̃N = 0

− λ̃N − λ̃t = 0.

(4)

The solution recovered by the inexact scheme is feasible, as
the equality constraints appear unchanged in the nonlinear
root-finding problem (4). The approximation introduced
by fixing the sensitivities affects instead the optimality of
the solution. For this reason, when analyzing the stability
of the closed-loop scheme, the question naturally arises
of how this approximation degrades the properties of the
optimal cost which is used as a Lyapunov function in exact
schemes.

The nominal stability proof will be based on a sensitivity
analysis of the solution to the nonlinear root-finding prob-
lem (4) with respect to the initial value x̄0 at the origin.
These considerations will be then exploited to prove that,
in a neighbourhood of the origin, the standard Lyapunov
stability arguments must hold for the inexact scheme as
well.

3.1 Sensitivity of the Suboptimal Solution

First, a result on the sensitivity of both optimal and
suboptimal solutions with respect to x̄0 will be derived.
Let w∗ = (x∗, u∗, λ∗) be the optimal solution associated
with the original NLP (1), hence satisfying the following
optimality conditions:

x∗0 − x̄0 = 0

Qx∗0 +∇xf(x∗0, u
∗
0)λ∗1 − λ∗0 = 0

Ru∗0 +∇uf(x∗0, u
∗
0)λ∗1 = 0

x∗1 − f(x̄0, u
∗
0) = 0

...
...

x∗N = 0

− λ∗N − λ∗t = 0,

(5)

where ∇xf and ∇uf denote the transpose of the Jacobian
of f with respect to x and u respectively. Equations (4)
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and (5) will be respectively referred to in the compact
forms

q̃(x̄0, w̃) = 0 and q∗(x̄0, w
∗) = 0,

where w̃ = (x̃, ũ, λ̃) is the vector containing the concate-
nated suboptimal primal and dual solution. The following
result holds:

Lemma 3. The magnitude of the deviation of the subopti-
mal solution w̃ from the optimal one w∗ is of second order
in the magnitude of the norm of the initial condition x̄0:

‖w̃(x̄0)− w∗(x̄0)‖ = O
(
‖x̄0‖2

)
.

Proof. By exploiting the implicit function theorem, it is
possible to express the sensitivity of optimal and subop-
timal solutions with respect to the initial condition x̄0
around the origin respectively as

∂w∗

∂x̄0
= − ∂q

∗

∂w∗

−1 ∂q∗

∂x̄0
and

∂w̃

∂x̄0
= − ∂q̃

∂w̃

−1 ∂q̃

∂x̄0
,

where invertibility of ∂q∗

∂w∗ and ∂q̃
∂w̃ is guaranteed in a

neighbourhood of the origin due to Assumption 1. It is
possible to see that the derivative matrices coincide at the
origin, i.e

∂q̃

∂w̃
(0, 0) =

∂q∗

∂w∗ (0, 0) and
∂q̃

∂x̄0
(0, 0) =

∂q∗

∂x̄0
(0, 0)

due to the fact that

A =
∂f

∂x
(0, 0) and B =

∂f

∂u
(0, 0).

This implies that both the constant and linear term of the
Taylor series of w̃(x̄0) and w∗(x̄0) coincide at the origin
x̄0 = 0. �

3.2 Suboptimality of the Inexact Scheme

In the following the OCP in (1) will be regarded in the
compact form

min
z

J(z)

s.t. G(x̄0, z) = 0,
(6)

where z := (x, u) has been introduced to refer to the primal
solution in compact form. The result from Lemma 3 can be
used to quantify the suboptimality of w̃(x̄0) as a function
of ‖x̄0‖. In particular, the following holds:

Lemma 4. The deviation of the cost J(z̃) associated with
the suboptimal solution from the optimal one J(z∗) is of
fourth order in ‖x̄0‖:

J (z̃(x̄0))− J (z∗(x̄0)) = O
(
‖x̄0‖4

)
.

Proof. The proof exploits the fact that z̃ is a feasible solu-
tion, hence G(x̄0, z̃) = 0. Thus, objective and Lagrangian
coincide J(z̃) = L(z̃, λ), where:

0 1 N N + 1

x̄0 x̃1

z∗1

z̃1

x̃1

Fig. 1. The sketch describes the procedure followed in the
proof of Theorem 5. The cost associated with the
suboptimal trajectory starting at x̄0 is first compared
with the one associated with the optimal trajectory
starting at x̃1 - in red. Then, due to Lemma 4, the
cost increases with the fourth power of ‖x̃1‖ going
from z∗1 to z̃1.

L(z, λ) := J(z)− λTG(z).

The Taylor series of the Lagrangian around the optimal
solution (z∗, λ∗) reads

L(z, λ∗)=L(z∗, λ∗)+∇zL(z∗, λ∗)T (z−z∗)+O
(
‖z − z∗‖2

)
.

Using the fact that z∗ is an optimal solution, i.e.
∇zL(z∗, λ∗) = 0, the following is obtained for z = z̃:

J(z̃) = L(z̃, λ∗) = L(z∗, λ∗) +O
(
‖(z̃ − z∗)‖2

)
= J(z∗) +O

(
‖(z̃ − z∗)‖2

)
.

Together with the fact that ‖w̃(x̄0)− w∗(x̄0)‖=O
(
‖x̄0‖2

)
,

this implies that the suboptimality grows with the fourth
power of the norm of the initial condition:

‖J (z̃(x̄0))− J (z∗(x̄0))‖ = O
(
‖x̄0‖4

)
. �

3.3 A Lyapunov Function for the Inexact Scheme

The observations made in the previous lemmata and the-
orems will be now exploited in order to build a Lyapunov
function for the system controlled by applying the subopti-
mal solution in a receding horizon fashion. The following
theorem states the main stability result for the inexact
scheme:

Theorem 5. The origin is a locally exponentially stable
equilibrium for the closed-loop system obtained by apply-
ing the suboptimal control input ũ0(x̄0).

Proof. In order to prove the above result, it is possible to
rely on Theorem 2. It will be shown that the cost

Ṽ (x̄0) := J (z̃(x̄0))

is a valid Lyapunov function. For a given initial condition
x̄0, the following holds:
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Ṽ (x̄0) ≥ 1

2
x̄T0Qx̄0 + V ∗(x̃1)

and, due to Lemma 4,

Ṽ (x̄0) ≥ x̄T0Qx̄0 + Ṽ (x̃1) +O
(
‖x̃1‖4

)
.

This last inequality shows that Ṽ (·) decreases for ‖x̃1‖
small enough. The trajectories taken into account to build
the proof are illustrated in Figure 1. As the primal solution
grows linearly with x̄0, i.e. x̃1 = O (‖x̄0‖), the following
holds:

Ṽ (x̄0) ≥ x̄T0Qx̄0 + Ṽ (x̃1) +O
(
‖x̄0‖4

)
.

Hence, there exist strictly positive constants ρ and c such
that

Ṽ (x̃1)− Ṽ (x̄0) ≤ −c ‖x̄0‖2 , ∀x̄0 ∈ Bρ.

Moreover, noting that

J(z̃(x̄0)) = z̃(x̄0)THz̃(x̄0),

where H is the Hessian of the cost J , together with the
well-posedness of the problem introduced in Assumption 1,
makes it possible to define a constant b > 0 such that

Ṽ (x̄0) ≤ b ‖x̄0‖2 .

Finally, a positive constant a such that Ṽ (x̄0) ≥ a ‖x̄0‖2
can be derived as previously done for Theorem 2.

�

4. ILLUSTRATIVE EXAMPLE

In this section, the inexact scheme will be applied to
a non-trivial example and it will be shown that the
conditions necessary for stability hold in a non-negligible
neighbourhood of the origin, as shown in Theorem 5.

An OCP of the form in (1) is considered, where f(·)
represents discretized dynamics obtained by applying the
explicit Runge-Kutta scheme of order 4 with fixed step-size
h = 0.1 to the following ordinary differential equation:

ẋ = fc(x, u) :=

[
x31 + (1 + x2)u1
x32 + x1 + u2

]
.

A control horizon T = 1 is used and the trajectories
are discretized using N = 10 shooting nodes. The cost
matrices have been chosen to be equal to the identity
matrix Q = R = I2.

The full-step Gauss-Newton algorithm will be used for
the comparison and both the exact and inexact SQP-
type algorithms will be iterated until either convergence
or failure. Two possible causes of failure are taken into
account: either the algorithm has not converged after a
maximum number of iterations τmax = 100 or an infeasible
QP has arisen.

The state space region X = {−1.2 ≤ x1 ≤ 1.2,−1.2 ≤
x2 ≤ 1.2} is discretized with an equally spaced grid and

−1 0 1

−1

0

1

x1

x
2

∆V < 0 ∆V ≥ 0 failure

−1 0 1

−1

0

1

x1

x
2

Fig. 2. ∆V for exact (left) and inexact (right) scheme. Decreasing
cost ∆V < 0 in green, non-decreasing cost ∆V ≥ 0 in red,
maximum number of iterations reached or infeasible SQP step
in blue. For the exact scheme, the cost is guaranteed to decrease
by construction. For the inexact one, the cost can be non-
decreasing due to the approximation introduced. However,
∆V < 0 holds in a non-negligible region around the origin.

−2

0

2

−2

0

2

0

100

200

300

x1
x2

ε
%

Fig. 3. Relative suboptimality ε% = Ṽ −V ∗
V ∗ · 100. The inexact

scheme gives rise to largely suboptimal policies in certain
regions of the state space, however, as shown in Figure 2
stability is guaranteed in a non-negligible region of the state
space.

the OCP is solved with both methods. For any initial
condition x̄0 and input computed u0, let ∆V be the cost
difference defined as

∆V := V (f(x̄0, u0))− V (x̄0).

Figure 2 shows the regions where ∆V < 0, ∆V ≥ 0 or a
failure is encountered, comparing the results obtained with
the two schemes. In particular, it is shown that stability
guarantees can be obtained for the inexact scheme in a
rather large neighbourhood of the origin.

The relative suboptimality ε% = Ṽ−V ∗

V ∗ · 100 of the tra-
jectories obtained with the inexact scheme is plotted in
Figure 3 for different initial conditions. The scheme can
become largely suboptimal for points sufficiently distant
from the origin, where the fixed sensitivities might not
be good approximations of the exact ones. However,
closed-loop feasibility is always guaranteed and stability
can be guaranteed in a non-negligible region as illustrated
in Figure 2.

Finally, in Figure 4, points on a line that passes through
the origin parametrized with the scalar coordinate xd
are considered [x1 x2] = xd [1 1.71] and the absolute
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suboptimality Ṽ − V ∗ is compared with 1
2 x̄

T
0Qx̄0. Due

to Lemma 4, the suboptimality is of fourth order in
‖x̄0‖, hence the inequality Ṽ − V ∗ < 1

2 x̄
T
0Qx̄0 holds in

a neighbourhood of the origin.

−0.2 −0.1 0 0.1 0.2

0

0.2

0.4

0.6

xd

Ṽ − V ∗

1
2 x̄

T
0 Qx̄0

Fig. 4. Absolute suboptimality as a function of the directional
coordinate xd. Ṽ − V ∗ is compared with 1

2
x̄T0 Qx̄0. Due to

Lemma 4, the suboptimality is dominated by the quadratic
cost associated with stage 0 of the OCP.

5. CONCLUSIONS AND OUTLOOK

An efficient inexact scheme based on the ideas presented
in (Bock et al., 2007) has been introduced and nominal
stability guarantees have been derived. The scheme ex-
ploits fixed sensitivity information obtained by evaluating
the derivatives at the reference and allows to avoid compu-
tationally intensive condensing and sensitivity generation
routines. It has been shown that the cost function in
problem (1), commonly used for the stability proof of
exact schemes, can be used as a Lyapunov function for
the inexact approach as well. An illustrative example is
given in which it is shown how the necessary conditions
for the cost to be usable as a Lyapunov function hold in a
rather large region around the origin.

Future work will include an efficient implementation of
the algorithm and extensive benchmarking. Moreover the
stability results could be extended in order to take into
account an approximate scheme where a single QP is
solved per iteration as proposed in (Diehl et al., 2007).
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