
Chapter 11
Nonlinear DC-link PI Control for Airborne
Wind Energy Systems During Pumping Mode

Korbinian Schechner, Florian Bauer and Christoph M. Hackl

Abstract During pumping mode, airborne wind energy systems are operated in two
phases: A power generating reel-out phase and a power dissipating reel-in phase.
The ground winch is connected via a DC-link voltage source converter to the grid.
The control of its DC-link voltage is a challenging task due to the bidirectional
power flow over the DC-link. Two PI controller designs are discussed: the classical
PI controller with constant parameters and a nonlinear PI controller with online
parameter adjustment. Based on a worst-case analysis of the physical properties,
bounds on the constant parameters of the classical PI controller are derived leading
to a conservative design to assure a stable operation also during the reel-in phase
where the system dynamics are non-minimum phase. To overcome these limitations
in the closed-loop bandwidth, a nonlinear PI controller is proposed which adjusts its
parameters online. For controller design, the linearized system model is used and the
controller parameters are computed via “online pole placement”. Simulation results
illustrate robustness, stability and improved control performance of the proposed
nonlinear PI controller in comparison to the classical PI controller.

11.1 Introduction

Kites are a promising approach to harvest wind energy at high altitudes (see [5, 10,
14] and references therein): As shown in Fig. 11.1, the kite is tethered to a ground
winch which is connected to an electric drive. Electric energy is generated in a
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Fig. 11.1 Pumping mode power generation with a kite

pumping process: During the “reel-out phase”, the kite is flown in fast crosswind
motions like figure eights with a high lift force. The kite pulls the tether which is
reeled out slowly. Energy is generated by operating the electric drive in generator
mode, i.e. generative braking. In the “reel-in phase”, the kite is flown in a low force
position like the zenith, or is pitched down, and is reeled back in while only a frac-
tion of the generated energy is dissipated by operating the winch drive in motor
mode. Compared to conventional wind turbines, this technology promises to har-
vest wind energy at higher altitudes using less material. Hence, it promises to have
a higher capacity factor, lower capital investments, and, therefore, a lower levelized
cost of electricity.

Several challenges of this technology have to be solved for deployment in the
power generation industry. In this chapter, we consider a ground winch with elec-
tric drive which is connected to the grid via a DC-link voltage source converter
(or power converter). This topology allows for independent control of active and
reactive power flow to and from the grid (bidirectional power flow). The DC-link
dynamics are highly nonlinear and, during the reel-in phase (motor mode), are non-
minimum phase which imposes a challenge on controller design. We discuss this
challenge of DC-link voltage control under the influence of a highly fluctuating
bi-directional power flow to and from the ground winch drive for a given reactive
power demand by the grid operator.

From a control point of view, non-minimum phase systems are particularly in-
teresting. In 1940 H.W. Bode was one of the first to discuss the phenomenon of
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non-minimum phase systems (see [4]). For classical output feedback control, the
closed-loop system bandwidth is drastically limited. High gains are not admissible
and so a very conservative controller (mostly a proportional-integral (PI) controller)
must be designed if constant controller parameters are used.

Although there exists a tremendous number of papers (over 8.000, see [7]) which
deal with the subject of DC-link control, only quite few papers (see [6, 7, 12, 16–
18, 23, 25, 27, 29–31]) do explicitly address the non-minimum phase behavior of
the DC-link dynamics in their metadata (such as abstract, title or indexing words).
There is quite a variety of proposed control strategies for the DC-link voltage con-
trol problem in power converters such as model predictive control strategies (see
[8, 15, 28] and references therein), flatness-based methods, linearization-based or
passivity-based approaches (see [11, 22] and references therein) or state-feedback
controller designs (see [7, 21, 26]) to name a few. For airborne wind energy sys-
tems, DC-link control is conceptually explained in [2] and [1] in the context of grid
integration of such renewable energy systems.

In this chapter (for first results see [3]), a nonlinear DC-link controller with on-
line adjustment of its controller parameters for a grid-connected voltage source con-
verter of an airborne wind energy system with bidirectional power flow (pumping
mode operation) is proposed. In addition, we investigate the classical PI controller
design with constant parameters. The focus on PI controllers is motivated by their
widespread use in industry. The contributions of this chapter are:

• Precise problem formulation and detailed modeling of the nonlinear DC-link dy-
namics of a three-phase grid-connected voltage source converter,

• Linearization of the nonlinear DC-link dynamics around a general equilibrium,
• Illustration and physical explanation of the non-minimum phase property (which

depends on the operation point),
• Description of classical PI controller design based on a physical worst-case anal-

ysis of the non-minimum phase behavior of the linearized system dynamics,
• Introduction of a nonlinear PI controller design where the controller parameters

are continuously adjusted online with respect to the actual “operating point”. To
ease implementation, analytical expressions to adjust the controller parameters
online are derived based on the physical properties of the system dynamics, and

• Simulation results to illustrate and compare the control performance of the classi-
cal and the proposed nonlinear PI controller design. To show realistic results, the
simulation comprises nonlinear and realistic models of the voltage source con-
verter with pulse width modulation, underlying current control loops and non-
linear power flow and nonlinear DC-link dynamics. Moreover, as realistic input
to the simulation model, the measured bi-directional (mechanical) power flow
of a real airborne wind energy demonstrator during pumping mode is used (see
Fig. 11.2, Courtesy of Roland Schmehl, TU Delft).

We do not present a thorough stability analysis of the proposed nonlinear controller.
However, as a proof of concept, the simulation results illustrate that the closed-loop
system is stable and robust to (bounded) parameter uncertainties.
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Fig. 11.2 Machine power pm(·) measured by the TU Delft Kite Power group with their demon-
strator on 23rd June 2012 kindly provided for our analysis. Negative is power generation (generator
mode), positive is power demand (motor mode)

11.2 Problem Formulation

We consider a grid-connected power converter as shown in Fig. 11.3. It shares its
DC-link with at least one electrical drive (electrical machine and voltage source
inverter). The electrical drive is the actuator of the electrical drive train of the
airborne wind energy (AWE) system which consists of the winch, the electrical
machine (e.g. a permanent-magnet, reluctance or electrically-excited synchronous
machine under four-quadrant control) and a voltage source inverter. The electrical
drive converts mechanical power to electrical (machine1) power2 pm [W] which is
exchanged with the DC-link via the DC-link power pdc [W] and the grid-connected
converter via the grid-side converter output power pg [W]. During pumping mode
(see Fig. 11.2), the machine power pm changes its sign: During the reel-out phase,
energy is generated (i.e. pm < 0) and, during the reel-in phase, energy is dissipated
(i.e. pm > 0) in the ground winch drive system. Due to the DC-link with capacitance
Cdc [F], machine and grid side are electrically coupled via the electrical power flow
over the DC-link (for more details see Sect. 11.3) but for an almost constant DC-link
voltage udc [V] both sides can be considered separately.

The grid-connected converter generates the voltages uabc
f = (ua

f ,u
b
f ,u

c
f )
> [V]3

which are applied to the RL-filter.3 At the point of common coupling (PCC, i.e. the
point of the grid connection), a current iabc

f = (iaf , i
b
f , i

c
f )
> [A]3 will flow through the

RL-filter with resistance Rf [Ω] and inductance Lf [H] into the balanced (ideal) grid
with voltage uabc

g = (ua
g ,u

b
g ,u

c
g)
> [V]3. To control the power flow on the grid side, the

power converter requires a sufficiently large (positive) and almost constant DC-link
voltage udc ≥ udc,min, where udc,min > 0 [V] is the required minimum DC-link volt-

1 Actually, the electrical power pe = η pm is exchanged with the power converter. But, for sim-
plicity, we assume that the electrical winch drive system has an efficiency of one, i.e. η = 1. This
simplification is justified, since in real world, a non-ideal efficiency η < 1 would simply scale
down the electrical power but will hardly affect the dynamics of the DC-link system.
2 For details on the nomenclature of this chapter see p. 274.
3 Another common filter topology is a LCL-filter (see [24, Chap. 11]).
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Fig. 11.3 Grid-connected converter with DC-link, filter and electrical drive

age for reasonable operation. The control objective is to achieve a stable set-point
tracking of a given constant reference value udc,ref ≥ udc,min > 0 for unknown and
possibly bidirectional but bounded mechanical power flows pm(·) ∈L ∞(R≥0;R).

We consider the reference currents iabc
f ,ref = (iaf ,ref, i

b
f ,ref, i

c
f ,ref)

> [A]3 as control in-
puts, i.e. the underlying current control-loops (with decoupled controllers, voltage
source converter and pulse width modulation or space vector modulation; for details
see [9]) are already adequately designed. As feedback variables the currents iabc

f and
the DC-link voltage udc are available (full state-feedback).

11.3 Modeling and System Analysis of the Power Converter

For balanced three-phase systems (see Assumption (A.1) below), the system dy-
namics reduce to a two-phase system which is represented in a rotating k = (d,q)-
reference frame or a fixed s = (α,β )-reference frame instead of the (a,b,c)-
reference frame. In general, for ξξξ ∈ {uf , if , if ,ref,ug}, we write

ξξξ k(t) :=
(
ξ d(t),ξ q(t)

)> := Tp(φg(t))−1 Tcξξξ abc(t)︸ ︷︷ ︸
=:ξξξ s(t)

where φg(t) [rad] is the angle of the grid voltage,

Tp(φg) :=
[

cos(φg) −sin(φg)
sin(φg) cos(φg)

]
, J :=

[
0 −1
1 0

]
and Tc := 2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(11.1)

are Park transformation matrix, rotation matrix (by π
2 counter-clock wise) and (sim-

plified) Clarke transformation matrix, respectively (for details see [9, 24]). In the re-
mainder of this chapter, we align the k = (d,q)-reference frame with the grid voltage
(“grid voltage orientation”). For modeling, we impose the following assumptions:
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Assumption (A.1) The grid is balanced with constant angular frequency ωg >
0 [rad/s] and the k = (d,q) reference frame is aligned with the grid voltage hav-
ing magnitude ûg > 0 [V], i.e. ua

g (t)+ub
g (t)+uc

g(t) = 0 and4

∀t ≥ 0: uk
g(t) = (ud

g (t), uq
g (t))

> = (ûg, 0)> = Tp(φg(t))−1Tcuabc
g (t).

Assumption (A.2) Power converter and DC-link are lossless (see Fig. 11.3), i.e.

∀ t ≥ 0: pdc(t) =−pm(t)− pg(t). (11.2)

Assumption (A.3) For current control-loop time constant Tapp > 0 [s], the current
dynamics are approximated by

d
dt

ikf (t) = 1
Tapp

(
− ikf (t)+ ikf ,ref(t)

)
, ikf (0) = ikf ,0 := Tp(φg,0)

−1Tciabc
f ,0 ∈ R2. (11.3)

Assumption (A.4) Reactive power reference and machine power are unknown but
bounded, i.e. qpcc,ref(·) ∈L ∞(R≥0;R) and pm(·) ∈L ∞(R≥0;R), respectively.

Assumption (A.5) The magnitude ûg of the grid voltage is large compared to the
voltage drop over the filter resistance, i.e. 2Rf idf (t)+ ûg > 0 for all t ≥ 0.

Remark 11.1. For unbalanced (non-symmetric) grids, the situation becomes more
difficult and positive, negative and zero sequence components must be considered
(see [24]). For the symmetric case, the voltage orientation of the k = (d,q) ref-
erence frame is achieved by the use of an adequate phase-locked loop algorithm
(see [24, Chap. 8]). Although modern power converters have an efficiency up to
98 %, switching losses depend on the switching frequency. So Assumption (A.2)
is a simplification. Assumption (A.3) is a standard assumption for current control-
loops and holds for sufficiently high switching and current control frequencies [19,
Sect. 13.4]. Assumption (A.4) is reasonable from a physical point of view. For most
practical applications, we have ûg � 1 and Rf � 1, so Assumption (A.5) should
hold. We will show that Assumption (A.5) is crucial for feasibility of any DC-link
voltage controller.

11.3.1 Nonlinear DC-link Dynamics

By invoking Kirchhoff‘s current and voltage laws, the dynamics of the grid-side
electrical circuit (as shown in Fig. 11.3) can be derived in the (a,b,c)-reference
frame as follows

uabc
f (t) = Rf iabc

f (t)+Lf
d
dt

iabc
f (t)+uabc

g (t), iabc
f (0) = iabc

f ,0 . (11.4)

4 Note that uk
f (t) = Tp(φg(t))−1Tcuabc

f (t) where φg(t) = ωg t + φg,0 for constant angular grid fre-
quency ωg > 0 and initial angular position φg,0 ∈ R.
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Applying the (simplified) Clarke transformation as in Eq. (11.1) to Eq. (11.4) allows
to rewrite the dynamics in the stationary s = (α,β )-reference frame as follows

us
f (t) = Tcuabc

f (t)
(11.4)
= TcRf iabc

f (t)+TcLf
d
dt

iabc
f (t)+Tcuabc

g (t)

= Rf isf (t)+Lf
d
dt

isf (t)+us
g(t), isf (0) = Tciabc

f ,0 . (11.5)

Then, in view of Assumption (A.1), utilizing the Park transformation as in Eq. (11.1)
and the product rule5 yield the system dynamics

uk
f (t) = Tp(φg(t))−1us

f (t)

(11.5)
= Tp(φg(t))−1Rf isf (t)+Tp(φg(t))−1Lf

d
dt

(
Tp(φg(t))ikf (t)

)
+Tp(φg(t))−1us

g(t)

= Rf ikf (t)+Lf
d
dt

ikf (t)+ωgLf Jikf (t)+uk
g(t) (11.6)

in the rotating k = (d,q)-reference frame (with grid voltage orientation). In view of
Assumption (A.2), the power balance in Eq. (11.2) holds at the DC-link which, for

pdc(t) = udc(t)Cdc
d
dt udc(t) and pg(t) = uabc

f (t)>iabc
f (t) = 3

2 uk
f (t)
>ikf (t),

[24, Sect. 9.2] and, in view of Assumption (A.3), leads to the nonlinear DC-link
dynamics in the rotating k = (d,q)-reference frame (for details see [9])

d
dt udc(t)

(11.2)
= 1

Cdcudc(t)

[
− pm(t)− 3

2 uk
f (t)
>ikf (t)

]
, udc(0) = udc,0

(11.6)
= 3

2Cdcudc(t)

[
− 2

3 pm(t)−Rf

∥∥∥ikf (t)
∥∥∥

2
−Lf ikf (t) d

dt ikf (t)

− ûgidf (t)−ωgLf ikf (t)
>J>ikf (t)︸ ︷︷ ︸

=0

]
(11.7)

(11.3)
= 3

2Cdcudc(t)

[
− 2

3 pm(t)−
(

Rf − Lf
Tapp

)∥∥∥ikf (t)
∥∥∥

2

− Lf
Tapp

ikf (t)
>ikf ,ref(t)− ûgidf (t)

]
(11.8)

with initial value udc(0) = udc,0 ≥ udc,min > 0, which is positive due to the flyback
diodes in the power converter [20, Sect. 8.3].

The reactive power at the point of common coupling (PCC) is given by qpcc(t) =
− 3

2 ûgiqf (t) [24, Sect. 9.2] and the reactive power reference qpcc,ref(·) will be provided

5 Note that d
dt Tp(φg(t)) = ωgTp(φg(t))J holds for all t ≥ 0 and φg(t) = ωgt +φg,0.
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by the grid operator. Hence, in view of Assumption (A.4), the current reference is

iqf ,ref(t) =−
2qpcc,ref(t)

3 ûg
. (11.9)

So, the q-component of the filter current is, for all t ≥ 0, given by

|iqf (t)|=
∣∣∣e−

t
Tapp iqf ,0−

∫ t

t0
e
− 1

Tapp
(t−τ) 2qpcc,ref(τ)

3Tappûg

∣∣∣
(A.4)
≤ |iqf ,0|+

2‖qpcc,ref‖∞
3ûg

(11.10)

and can be regarded as time-varying but bounded disturbance to the DC-link dy-
namics given in Eq. (11.8). For the following, we define state vector, input and
disturbance by

x :=
(

x1
x2

)
:=
(

udc
idf

)
, u := idf ,ref, d := 2

3 pm +
(

Rf − Lf
Tapp

)
(iqf )

2− 2Lf
3Tappûg

iqf qpcc,ref

(11.11)
(with iqf as in Eq. (11.10)), respectively. Note that, by Assumptions (A.4), d(·) ∈
L ∞(R≥0;R) holds. The (reduced) system dynamics can be written in standard form
as follows

d
dt x(t)=f(x(t),u(t),d(t)), x(0) =

(
udc,0
idf ,0

)

y(t)=
(
1 0
)

︸ ︷︷ ︸
=:c>

x(t)





(11.12)

where

f : R2×R×R→ R2, (x,u,d) 7→ f(x,u,d) :=
(

f1(x,u,d)
f2(x,u,d)

)
:=

(
3

2Cdcx1

(
−
(

Rf − Lf
Tapp

)
x2

2−
Lf

Tapp
x2u− ûgx2−d

)

1
Tapp

(−x2 +u)

)
. (11.13)

11.3.2 Equilibrium and Linearization

For the following denote state, control input and disturbance at an equilibrium by

x? := (x?1, x?2)
> = (u?dc, id,?f )>

u? := id,?f ,ref

d? := 2
3 p?l +

(
Rf − Lf

Tapp

)
(iq,?f )2− 2Lf iq,?f

3Tappûg
q?PCC,ref

(11.9)
= 2

3 p?l +Rf (i
q,?
f )2.





(11.14)

At equilibrium given in Eqs. (11.14), the following must hold d
dt x = f(x?,u?,d?) =

02, which gives
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u? = x?2 and R f (x?2)
2 + ûgx?2 =−d?, (11.15)

where the second condition in Eq. (11.15) has the solution(s)

x?2 =−
ûg

2Rf

(
1∓
√

1− 4d?Rf
û2

g

)
.

Only, for d? ≤ û2
g

4Rf
(which holds since ûg� 1 and Rf � 1 in real world), the solution

is physically meaningful (non-complex roots). By denoting the small signals by

xl := x−x?, ul := u−u?, yl := y− y?, and dl := d−d?, (11.16)

a linearization of system in Eqs. (11.12) around the equilibrium (x?, u?, d?) yields

d
dt xl(t) = A?xl(t)+b?ul(t)+b?ddl(t)

yl(t) = c>xl(t)

}
(11.17)

where higher order terms are neglected and6

A? :=
∂ f(x,u,d)

∂x

∣∣∣∣
(x?,u?,d?)

(11.15)
=


0

=:a?12︷ ︸︸ ︷
3

2Cdcu?dc

(( Lf
Tapp
−2Rf

)
id,?f − ûg

)

0 − 1
Tapp


 ∈ R2×2, (11.18)

b? :=
∂ f(x,u,d)

∂u

∣∣∣∣
(x?,u?,d?)

=




=:b?1︷ ︸︸ ︷
− 3

2Cdcu?dc

Lf
Tapp

id,?f

1
Tapp


 ∈ R2 (11.19)

and

b?d :=
∂ f(x,u,d)

∂d

∣∣∣∣
(x?,u?,d?)

=

(
− 3

2Cdcu?dc
0

)
∈ R2. (11.20)

In the following, for brevity, we use ? as superscript to indicate that the cor-
responding variable (matrix, vector, coefficient) depends on the operation point
(e.g. A? = A?(x?,u?,d?) or a?12 = a?12(x

?)), whereas variables without ? do not de-
pend on the operation point as given in Eqs. (11.14).

6 Note that
∂ f1(x,u,d)

∂x1

∣∣∣∣
(x?,u?,d?)

=− 1
x?1

f1(x?,u?,d?)︸ ︷︷ ︸
=0

= 0.
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11.3.3 Non-Minimum Phase Dynamics

To illustrate the non-minimum phase dynamics of the (linearized) system given
in Eqs. (11.17) during reel-in phase, we compute the transfer function (for details
see [9])

FS(s) := yl(s)
ul(s)

=
(udc−u?dc)(s)
(idf ,ref−idf )(s)

= c> (sI2−A?)−1 b? =−V ?
S (1+sT ?V )

s(1+sTapp)
. (11.21)

where system gain V ?
S [V/A] and numerator time constant T ?

V [s] depend on the cur-
rent id,?f and are defined as follows

V ?
S :=V ?

S (i
d,?
f ,u?dc) :=

3(ûg+2Rf id,?f )

2Cdcu?dc
and T ?

V := T ?
V (i

d,?
f ) :=

Lf id,?f

ûg+2Rf id,?f
.

(11.22)

For different operating points (x?,u?,d?), the numerator time constant T ?
V can

either be zero, positive or negative (note that, in view of Assumption (A.5), we have
ûg+2Rf id,?f > 0). During the reel-in phase (motor mode), we have a zero in the right
(unstable) complex half-plane, since power is drawn from the grid and transferred
to the DC-link (see Fig. 11.3), i.e. id,?f < 0 and, hence, T ?

V < 0: The system is non-
minimum phase. In Fig. 11.4, the root loci of Eq. (11.21) are plotted for the three
cases T ?

V = 0, T ?
V > 0 and T ?

V < 0. If T ?
V < 0, too large gains will render the closed-

system unstable which necessitates a rather conservative controller design.
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11.3.4 Physical Explanation of the Non-Minimum Phase Behavior

In this section, we will explain the non-minimum phase behavior from a physical
point of view. In particular, we will discuss the often observed initially reversed
system response due to step-like reference changes.

First note that the DC-link voltage is (normally) larger than the grid voltage am-
plitude, i.e. udc > ûg. Hence, during the reel-in phase, the power converter operates
as boost converter to transfer energy from the grid to the DC-link which requires that
energy is stored in the filter inductance before it can be pushed into the DC-link. For
our analysis, we will consider a time instant t ≥ 0 with the following properties

(i) idf (t)< 0 (i.e. current flows from grid to DC-link),
(ii) pm(t)> 0 (i.e. reel-in phase, motor mode), and
(iii) d

dt iqf (t) = iqf (t) = 0 (i.e. no reactive power).



 (11.23)

For Eqs. (11.23), the nonlinear DC-link dynamics in Eq. (11.7) simplify to

d
dt udc(t) = 1

udc(t)Cdc︸ ︷︷ ︸
> 0, see

Sect. 11.3.1

[
−pm(t)︸ ︷︷ ︸

(11.23)
< 0

− 3
2 Rf idf (t)

2

︸ ︷︷ ︸
<0

− 3
2 Lf idf (t)

d
dt idf (t) − 3

2 ûgidf (t)︸ ︷︷ ︸
(11.23)
> 0

]
.

(11.24)

We will only consider the case of a positive DC-link voltage reference change, i.e.

udc,ref(t)> udc(t) =⇒ idf ,ref(t)< idf (t)
(11.23)
< 0

(11.3)
=⇒ d

dt idf (t)< 0. (11.25)

The other case follows analogously. To (immediately) increase the DC-link voltage,
d
dt udc(t) > 0 must hold and, from Eq. (11.24), it follows that this is feasible if and
only if the time derivative of magnetic energy (in the filter inductance) satisfies

3
2 Lf idf (t)

d
dt

idf (t)<
(
−pm(t)︸ ︷︷ ︸

(11.23)
< 0

− 3
2 Rf idf (t)

2

︸ ︷︷ ︸
<0

− 3
2 ûgidf (t)︸ ︷︷ ︸
(11.23)
> 0

)
=: α(t). (11.26)

There exist two scenarios when the DC-link voltage will initially decrease, i.e. the
typical non-minimum phase behavior with initially reversed system response:

(S1) For a very large machine power pm(t)� 1 (energy dissipation), we might have
α(t)< 0. Then, due to idf (t)< 0 and d

dt idf (t)< 0 in Eq. (11.25), the change in the
magnetic energy 3

2 Lf idf (t)
d
dt idf (t) is positive which contradicts Eq. (11.26) and

udc(·) will decrease until α(τ)> 0 will change its sign at some τ > t ≥ 0.
(S2) For a small machine power pm(t) > 0 and a large grid voltage ûg � 1, we

might have α(t) > 0. But very fast current dynamics in Eq. (11.3) might yield
3
2 Lf idf (t)

d
dt idf (t)≥ α(t) which also contradicts Eq. (11.26) and leads to an initial
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decrease of udc(·) until Eq. (11.26) holds again for some τ > t ≥ 0 with α(τ)>
α(t).

Note that such a time instant τ > t ≥ 0 does exist, since the active power drawn from
the grid, i.e. − 3

2 ûgidf (t) in Eq. (11.26), will become larger and larger for more and
more negative currents idf (·) (as result of d

dt idf (t)< 0).
Concluding, the non-minimum phase behavior of the DC-link voltage control

problem arises from the change of the magnetic energy 3
2 Lf idf (t)

d
dt idf (t) in the filter

inductance which might constrain the time derivative of the DC-link voltage for pos-
itive changes of the machine power (see Experiment (E1) in Fig. 11.8 at t = 0.2s) or
for positive set-point changes of the DC-link reference voltage (see Experiment (E3)
in Fig. 11.12 at t = 0.2s).

11.4 Classical DC-Link PI Controller Design

In this section, we discuss the classical PI controller design with constant controller
parameters for the DC-link voltage set-point tracking problem.

For this classical approach the controller parameters are set after a reasonable
tuning has been performed. The controller design is based on a (local) analysis of
the linearized closed-loop system invoking the Hurwitz criterion. Applying a PI
controller with transfer function

FPI(s) =
idf ,ref(s)

udc,ref(s)−udc(s)
=−VR

1+sTn
sTn

, (11.27)

with controller gain VR [A/V] and controller time constant Tn [s], to the (linearized)
system in Eq. (11.21) yields the closed-loop transfer function

FCL,PI(s) =
FPI(s)FS(s)

1+FPI(s)FS(s)
=

VRV ?
S
(1+sTn)(1+sT ?V )

s2Tn(1+sTapp)

1+VRV ?
S
(1+sTn)(1+sT ?V )

s2Tn(1+sTapp)

=

VRV ?
S

TappTn
(1+sTn)(1+sT ?V )

s3q?3+s2q?2+sq?1+q?0
=: NCL,PI(s)

DCL,PI(s)

(11.28)

with the coefficients

q?3 = 1, q?2 =
1

Tapp
+

VRV ?
S T ?V

Tapp
, q?1 =VRV ?

S

(
1

Tapp
+

T ?V
TnTapp

)
, q?0 =

VRV ?
S

TnTapp
(11.29)

of the denominator polynomial DCL,PI(s). Now, the controller parameters VR and Tn
have to be specified (and tuned) to guarantee a stable closed-loop system behavior
for all three operation points T ?

V = 0, T ?
V > 0 and T ?

V < 0.
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T ?
n (VR)

εT Tn,min(εVVR,max)stable region
• red: without stability margins
• blue: with stability margins

VR

T n

Fig. 11.5 Admissible region for controller gain VR and controller time constant Tn to guarantee
local stability (see sufficient conditions (C1) and (C2) in Eq. (11.30))

11.4.1 Local Stability Analysis Using the Hurwitz Criterion

In [9], the following two conditions for local stability were derived using the Hur-
witz criterion:

(C1) 0<VR <
1
|T ?V |V ?

S︸ ︷︷ ︸
:=V ?

R

and (C2) Tn >
Tapp

1−VRV ?
S |T ?V | + |T

?
V |

︸ ︷︷ ︸
:=T ?n (VR)

> 0. (11.30)

These two conditions are sufficient and guarantee local stability in the sense that the
Hurwitz criterion (i.e. q?0, q?1, q?2, q?3 > 0 and q?2q?1−q?3q?0 > 0 [13, Theorem 3.4.71])
is satisfied locally. The region for choosing admissible controller parameters to as-
sure local stability is shown in Fig. 11.5.

Remark 11.2 (Controller sign). Note the minus sign of the PI controller in Eq. (11.27)
which is crucial to compensate for the minus sign of the linearized system dynamics
in Eq. (11.21).

11.4.2 Worst-Case Analysis

The upper and lower bounds in Eq. (11.30) on the controller gain VR and the con-
troller time constant Tn depend on the actual operating point in Eq. (11.14) (i.e., in
particular, id,?f and u?dc). A worst-case analysis is beneficial such that the chosen con-
troller parameters satisfy Eq. (11.30) for a wide range of different operation points.
The goal of this section is to determine bounds VR,max and Tn,min for the conditions
in Eq. (11.30) such that the following holds for the complete operation range of the
closed-loop system:

∀id,?f ∈ [idf ,min, idf ,max] ∀u?dc ∈ [udc,min,udc,max] :

0<VR <VR,max ≤V ?
R (i

d,?
f ,u?dc) and Tn > Tn,min ≥ T ?

n (i
d,?
f )> 0. (11.31)
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To derive the worst-case bounds on the controller parameters, the physical limits
of the system in steady state are computed.

11.4.2.1 DC-Link Voltage Limits (in Steady State)

The steady state DC-link voltage is constrained by the lower (positive) limit

udc,min >max

{√
4ω2

g L2
f û2

g

R2
f +ω2

g L2
f
; 3
√

3
π ûg

}
> 0, (11.32)

which is due to the flyback diodes (which act as rectifier and, in continuous con-
duction mode, give the DC-link voltage 3

√
3

π ûg, see [20, pp. 85-90]), and the upper
(positive) limit

udc,max > udc,min > 0 (11.33)

which is set by the user to protect the physical system (e.g. capacitance or switches).

11.4.2.2 Current Limits (in Steady State)

To ease computation of the physical upper and lower limits on the current idf , the
derivation is shown for steady state, i.e. d

dt (·) = 0, and for iqf = 0 (which gives a
maximal/minimal idf ). For this case, the system dynamics of Eq. (11.6) simplify to

ud
f = Rf idf + ûg and uq

f = ωgLf idf . (11.34)

Moreover, for a regularly sampled, symmetrical pulse width modulation scheme,
the maximal magnitude of the admissible voltage vector (see [20, pp. 658-720]) is

‖uk
f ‖=

√
(ud

f )
2 +(uq

f )
2 ≤ udc

2 ,

which leads to the following inequality constraint

∥∥∥uk
f

∥∥∥
2
− u2

dc
4

(11.34)
=

(
R2

f +ω2
g L2

f
)
(idf )

2 +2Rf ûgidf + û2
g −

u2
dc
4 ≤ 0. (11.35)

Solving Eq. (11.35) for idf and inserting udc = u?dc gives the two solutions

id,?f (u?dc) :=
−Rf ûg±

√
(

R2
f +ω2

g L2
f

) (u?dc)
2

4 −ω2
g L2

f û2
g

R2
f +ω2

g L2
f

. (11.36)

Considering the maximally admissible DC-link voltage, i.e. u?dc = udc,max, allows to
compute the upper (positive) current limit



11 Nonlinear DC-link PI Control for AWE Systems During Pumping Mode 255

idf ,max :=
−Rf ûg+

√
(

R2
f +ω2

g L2
f

) (udc,max)
2

4 −ω2
g L2

f û2
g

R2
f +ω2

g L2
f

> 0. (11.37)

and the lower (negative) current limit

idf ,min :=
−Rf ûg−

√
(

R2
f +ω2

g L2
f

) (udc,max)
2

4 −ω2
g L2

f û2
g

R2
f +ω2

g L2
f

< 0 and |idf ,min|> idf ,max.

(11.38)

11.4.2.3 Worst-Case Selection of Controller Gain VR

To derive the upper limit VR,max for the controller gain VR, it is necessary to identify
the minimal value of V ?

R which can be done as follows

∀id,?f ∈ [idf ,min, idf ,max] ∀u?dc ∈ [udc,min,udc,max] :

V ?
R (u

?
dc)

(11.22),(A.5)
=

2Cdcu?dc

3Lf

∣∣id,?f

∣∣
(11.36)
=

2Cdc

(
R2

f +ω2
g L2

f

)
u?dc

3Lf

(
Rf ûg+

√
(

R2
f +ω2

g L2
f

) (u?dc)
2

4 −ω2
g L2

f û2
g

) > 0.

(11.39)

To characterize the curve V ?
R (·), its derivative with respect to u?dc is computed

d
du?dc

V ?
R (u

?
dc) =

2Cdc

(
R2

f +ω2
g L2

f

)

2Lf


Rf ûg+

√
(

R2
f +ω2

g L2
f

) (u?dc)
2

4 −ω2
g L2

f û2
g




2 ·

·
[

Rf ûg +

√(
R2

f +ω2
g L2

f

)
(u?dc)

2

4 −ω2
g L2

f û2
g −

R2
f +ω2

g L2
f

4

√
(

R2
f +ω2

g L2
f

) (u?dc)
2

4 −ω2
g L2

f û2
g

u?dc
2

]
,

(11.40)

which shows that V ?
R (·) is a monotonically decreasing function until its minimum is

reached at (see Fig. 11.6)

u?dc = uopt
dc :=

√
4ω2

g L2
f û2

g

R2
f +ω2

g L2
f

(
ω2

g L2
f

R2
f

+1
)
,

since the following holds true

∀ u?dc ∈
(
udc,min, uopt

dc ) : d
du?dc

V ?
R (u

?
dc)< 0. (11.41)
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V ?
R (u

?
dc)

u?dc

V
? R

udc,min udc,max uopt
dc

V R
,m

ax

Fig. 11.6 Evolution of the function u?dc 7→V ?
R (u

?
dc) for u?dc ≥ udc,min

Note that udc,max ≤ u?dc < uopt
dc is not feasible, hence the minimum of V ?

R (·) on the
admissible interval [udc,min,udc,max] is given by

V ?
R (udc,max) =

2Cdc

(
R2

f +ω2
g L2

f

)
udc,max

3Lf

(
Rf ûg+

√
(

R2
f +ω2

g L2
f

) (udc,max)
2

4 −ω2
g L2

f û2
g

) (11.38)
=

2Cdcudc,max

3Lf

∣∣∣idf ,min

∣∣∣
=: VR,max,

(11.42)

which represents a worst-case upper limit for the choice of the controller gain VR
of the classical PI controller in Eq. (11.27) with constant parameters. To satisfy the
inequality in Eq. (11.31), we introduce a safety margin εV and choose the controller
gain as follows

VR = εVVR,max with 0< εV < 1. (11.43)

Remark 11.3 (Simplified worst case analysis). Note that a simplified worst case
analysis yields

V ?
R = 1

|T ?V |V ?
S

(11.22),(A.5)
=

2Cdcu?dc

3Lf

∣∣∣id,?f

∣∣∣

(11.38)
≥ 2Cdcudc,min

3Lf

∣∣∣idf ,min

∣∣∣
=: ṼR,max, (11.44)

(i.e. using udc,min in the nominator instead of udc,max) which gives even a more con-
servative upper bound on the PI controller gain VR. For the simulated system in
Sect. 11.6, this would cause a reduction of VR,max by 37.5 % and, hence, an even
more conservative controller design.

11.4.2.4 Worst-Case Selection of Controller Time Constant Tn

To select the controller time constant Tn as requested in Eq. (11.31), we need to
derive the lower bound Tn,min. Straight-forward calculations show that the following
holds for all id,?f ∈ [idf ,min, idf ,max] and for all u?dc ∈ [udc,min,udc,max]
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T ?
n

(11.30)
=

Tapp

1−VRV ?
S |T ?V | + |T

?
V |

(11.30),(11.22)
=

Tapp

1−VR
V ?

R

+

∣∣∣∣
Lf id,?f

ûg+2Rf id,?f

∣∣∣∣

(11.39)
≤ Tapp

1− VR
VR,max

+
Lf |id,?f |

ûg−2Rf |id,?f |

(11.38),(11.43)
≤ Tapp

1−εV
+

Lf |idf ,min|
ûg−2Rf |idf ,min|

=: Tn,min .

(11.45)

Now, for any stability margin εT > 1, we choose the controller time constant to

Tn = εT Tn,min > Tn,min ≥ T ?
n (VR) with εT > 1, (11.46)

and, therefore, will assure that Eq. (11.30) holds true.

11.5 Nonlinear DC-link PI Controller Design

Due to the possible non-minimum phase behavior of the DC-link dynamics and its
constant controller parameters, the classical PI controller must be tuned in a very
conservative fashion (recall Sect. 11.4.2) which leads to a very slow closed-loop sys-
tem response for most operation points. In this section, we propose a nonlinear PI
controller design which instantaneously adjusts its controller parameters to an (ap-
proximate) actual operation point (“online parameter adjustment”). The nonlinear
controller has the following state space representation

d
dt xi(t) = udc,ref(t)−udc(t) , xi(0) = 0

idf ,ref(t) = VR(idf ,udc)
(
udc,ref(t)−udc(t)

)
+

VR(idf ,udc)

Tn(idf ,udc)
xi(t)



 (11.47)

and requires feedback of the actual d-component idf (t) of the filter current and the
DC-link voltage udc(t) (both are measured and, therefore, available for feedback).

For controller tuning, we specify a desired (local) closed-loop system response
via a given Hurwitz polynomial and implement an “online pole placement” strategy
to adjust the controller parameters online. Recalling the system order of the closed-
loop system in Eq. (11.28), three poles have to be specified. More precisely, there
is one real pole λ1 ∈ R and a (possibly) conjugate-complex pole pair λR± ıλI ∈ C
which defines the desired closed-loop system polynomial

Ddesired
CL,PI (s) : = (s−λ1)(s−λR− ıλI)(s−λR + ıλI) = s3 p?3 + s2 p?2 + sp?1 + p?0

(11.48)

with coefficients

p?3 = 1, p?2 =−2λR−λ1, p?1 = λ 2
R +λ 2

I +2λ1λR, p?0 =−λ1(λ 2
R +λ 2

I ).
(11.49)
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Clearly, the desired polynomial in Eq. (11.48) must be a Hurwitz polynomial which
is satisfied if and only if λ1 < 0 and λR < 0 or p?0, p

?
1, p

?
2, p

?
3 > 0 and p?1 p?2− p?3 p?0 > 0

hold true. Important to note that, due to the use of a PI controller, we only have
two design parameters (i.e. VR and Tn) and, so, the problem is under-determined.
Therefore, we will only specify (or fix) λR and λI and leave λ1 free. It will depend
on λR, λI , VR and Tn and must be negative which has to be assured by an appropriate
choice of λR and λI .

11.5.1 Pole Placement

Comparing the coefficients of the desired polynomial Ddesired
CL,PI (s) in Eq. (11.48) and

the denominator polynomial DCL,PI(s) of the linearized closed-loop system dynam-
ics in Eq. (11.28) allows to solve for the controller parameters VR and Tn and for the
free pole λ1 as follows (details are omitted)

VR =− 2λR+T ?V λ 2
I +T ?V λ 2

R−Tappλ 2
I +3Tappλ 2

R+2T ?V Tappλ 3
R+2T ?V Tappλ 2

I λR

V ?
S ((T

?
V )2λ 2

R+(T ?V )2λ 2
I +2T ?V λR+1)

=−
2λR

(
T ?V (λ 2

R+λ 2
I )+2λR+

1
Tapp

)
+

(
T ?V

Tapp
−1
)
(λ 2

R+λ 2
I )

V ?
S

Tapp
((T ?V )2(λ 2

R+λ 2
I )+2T ?V λR+1)

, (11.50)

Tn =− 2λR+T ?V λ 2
I +T ?V λ 2

R−Tappλ 2
I +3Tappλ 2

R+2T ?V Tappλ 3
R+2T ?V Tappλ 2

I λR

(λ 2
R+λ 2

I )(T ?V Tappλ 2
I +T ?V Tappλ 2

R+2TappλR+1)

=−
2λR

(
T ?V (λ 2

R+λ 2
I )+2λR+

1
Tapp

)
+

(
T ?V

Tapp
−1
)
(λ 2

R+λ 2
I )

(λ 2
R+λ 2

I )
(

T ?V (λ 2
R+λ 2

I )+2λR+
1

Tapp

) (11.51)

and

λ1 =−
T ?V (λ 2

R+λ 2
I )+2λR+

1
Tapp

(T ?V )2(λ 2
R+λ 2

I )+2T ?V λR+1
. (11.52)

Remark 11.4. Solving for λR or λI (so one of those is free) instead of λ1 would yield
an infinite closed-loop pole or an infinite controller gain if T ?

V = 0. Therefore, λ1 is
considered as free pole.
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11.5.2 Sufficient Condition for (Local) Stability

For a stable behavior of the closed-loop system in Eq. (11.28), the real parts of all
poles must be negative, i.e. λ1 < 0 and λR < 0. Clearly, λR can be chosen negative,
but value and sign of λ1 depend on the time constant T ?

V of the linearized system
in Eq. (11.21), the time constant Tapp of the converter, and the real pole λR and the
imaginary part λI of the conjugate-complex pole pair. Moreover, it has to be assured
that the varying controller parameters VR =VR(T ?

V ,V
?
S ) and Tn = Tn(T ?

V ) will remain
positive over the complete operation range (i.e. T ?

V = 0, T ?
V > 0 and T ?

V < 0).

11.5.2.1 Assuring a Negative Real Pole λ1

To assure that λ1 in Eq. (11.52) is negative, we will derive bounds on the choices of
λR < 0 and λI ∈ R. First note that, we may rewrite the real pole as follows

λ1 =−
T ?V (λ 2

R+λ 2
I )+2λR+

1
Tapp

(T ?V )2(λ 2
R+λ 2

I )+2T ?V λR+1
=:− Nλ1

(T ?V )

Dλ1
(T ?V ) (11.53)

in compact form. Analyzing the denominator yields

Dλ1(T
?

V ) := (T ?
V )

2 (λ 2
R +λ 2

I
)
+2T ?

V λR +1

=





1 T ?
V = 0

(T ?
V )

2
(

λR +
1

T ?V

)2
+λ 2

I (T
?

V )
2, T ?

V 6= 0

⇐⇒ ∀T ?
V ∈ R : Dλ1(T

?
V )> 0, (11.54)

which shows that the denominator Dλ1 is positive over the whole operation range.
Hence, to achieve λ1 < 0, the numerator of Eq. (11.53) must also be positive,
i.e. Nλ1(T

?
V )> 0 for all operation points T ?

V = 0, T ?
V > 0, and T ?

V < 0. The numerator
can be written as

Nλ1(T
?

V ) := T ?
V (λ

2
R +λ 2

I )+2λR +
1

Tapp

=





2λR +
1

Tapp
T ?

V = 0

T ?
V

(
λR +

1
T ?V

)2
+T ?

V λ 2
I − 1

T ?V
+ 1

Tapp
, T ?

V 6= 0,
(11.55)

which might change its sign with T ?
V and the choices of λR and λI . To check the sign

of numerator Nλ1 , the three following cases have to be investigated to derive bounds
on λR and λI , respectively:

• Case T ?
V = 0:

Nλ1

(11.52)
= 2λR +

1
Tapp

> 0 ⇐= λR >− 1
2Tapp

(11.56)
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• Case T ?
V > 0:

Nλ1

(11.52)
= T ?

V λ 2
I︸ ︷︷ ︸

> 0

+T ?
V λ 2

R︸ ︷︷ ︸
> 0

+2λR +
1

Tapp
> 0 ⇐= λR >− 1

2Tapp
(11.57)

• Case T ?
V < 0:

Nλ1 = T ?
V

(
λR +

1
T ?V

)2
+T ?

V λ 2
I − 1

T ?V
+ 1

Tapp
> 0

⇐= |λR|>− 1
T ?V
±
√
−λ 2

I + 1
(T ?V )2 − 1

T ?V Tapp
and |λI |<

√
1

Tapp|T ?V |
(11.58)

Evaluating and combining the results above and imposing the necessary condition
λR < 0, we obtain the following sufficient condition

max
{
− 1

T ?V
−
√
−λ 2

I + 1
(T ?V )2 − 1

T ?V Tapp
,− 1

2Tapp

}
< λR < 0 and |λI |<

√
1

Tapp|T ?V |
=⇒ ∀T ?

V ∈ R : Nλ1(T
?

V )> 0 and Dλ1(T
?

V )> 0

=⇒ ∀T ?
V ∈ R : λ1 =−

Nλ1
(T ?V )

Dλ1
(T ?V ) < 0.

(11.59)
which assures local stability of the closed-loop system in Eq. (11.28).

Remark 11.5 (Comments on stability). Clearly, the nonlinear PI controller design is
based on the linearized system in Eq. (11.17), hence pole placement will only hold
locally. The drawback of a local result, we try to overcome by online adjustment
of the controller parameters (“online pole placement”). However, by online adjust-
ment, the controller parameters in Eq. (11.60) and in Eq. (11.61) of the linearized
closed-loop system in Eq. (11.28) become “time-varying” or, more precisely, non-
linear. So global stability can not be deduced by checking negativity of the real parts
of the poles of the linearized closed-loop system in Eq. (11.28).

11.5.2.2 Assuring Positive Controller Parameters

In addition to conditions in Eqs. (11.59), we check whether the controller parameters
will remain positive over the whole operation range (otherwise positive feedback
might endanger stability). First note that, by invoking Nλ1 as in Eq. (11.55) and Dλ1
as in Eq. (11.54), we may rewrite the controller parameters as follows

VR =−
2λRNλ1

(T ?V )+

(
T ?V

Tapp
−1
)
(λ 2

R+λ 2
I )

V ?
S

Tapp
Dλ1

(T ?V )

and Tn =−
2λRNλ1

(T ?V )+

(
T ?V

Tapp
−1
)
(λ 2

R+λ 2
I )

(λ 2
R+λ 2

I )Nλ1
(T ?V )

.

In view of the sufficient conditions in Eqs. (11.59) for local stability and the addi-
tional but physically reasonable assumption:
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Assumption (A.6) For the whole operation range, the following holds true

∀id,?f ≤ idf ,max : T ?
V (i

d,?
f )< Tapp ⇐⇒ T ?V (id,?f )

Tapp
< 1,

it is easy to see that the numerators are negative and the denominators are positive,
i.e. 2λRNλ1(T

?
V )+

( T ?V
Tapp
−1
)(

λ 2
R +λ 2

I
)
< 0, V ?

S Dλ1(T
?

V )> 0 and
(
λ 2

R +λ 2
I
)
Nλ1(T

?
V )>

0 for all T ?
V ∈R, which implies positivity of the controller parameters, i.e. VR(T ?

V )>
0 and Tn(T ?

V )> 0 for all T ?
V ∈ R.

11.5.3 Online Adjustment of the Controller Parameters

This far the controller design was based on the linearized closed-loop dynamics as-
suming that an equilibrium exists. For implementation and online parameter adjust-
ment the actual d-component current idf (t) and the actual DC-link voltage udc(t)
measurements will be used. Using the approximations

V ?
S (i

d
f ,udc) =

3(ûg+2Rf idf )
2Cdcudc

≈V ?
S (i

d,?
f ,u?dc) and T ?

V (i
d
f )≈ T ?

V (i
d,?
f ) :=

Lf idf
ûg+2Rf idf

the controller parameters become functions of the measured values as follows

VR(idf (t),udc(t)) =−
2λR

(
T ?V (idf (t))(λ

2
R+λ 2

I )+2λR+
1

Tapp

)
+

(
T ?V (idf (t))

Tapp
−1

)
(λ 2

R+λ 2
I )

V ?
S (i

d
f (t),udc(t))

Tapp
((T ?V )2(λ 2

R+λ 2
I )+2T ?V λR+1)

(11.60)
and

Tn(idf (t)) =−
2λR

(
T ?V (idf (t))(λ

2
R+λ 2

I )+2λR+
1

Tapp

)
+

(
T ?V (idf (t))

Tapp
−1

)
(λ 2

R+λ 2
I )

(λ 2
R+λ 2

I )
(

T ?V (idf (t))(λ
2
R+λ 2

I )+2λR+
1

Tapp

) . (11.61)

Note that the integrator time “constant” Tn(idf (t)) does not depend on udc(t).

11.6 Simulation Results

In this section, the overall grid-connected voltage source power converter (includ-
ing switching behavior, pulse width modulation underlying current control-loops)
with the classical and the nonlinear DC-link PI controllers is implemented using
Malab/Simulink. The goal is to investigate and illustrate (i) closed-loop system sta-
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Fig. 11.7 Block diagram of the implementation of the overall DC-link control system with under-
lying current control-loops, switching behavior of the converter, pulse width modulation (PWM),
and phase-locked loop (PLL) for grid synchronization. More details can be found in [9] (with
similar notation) or [24, Chap. 9]

bility, (ii) control performance of the controllers and (iii) impact of parameter un-
certainties on the control performance of the nonlinear PI controller.

11.6.1 Implementation

Fig. 11.7 shows the block diagram of the implementation of controller and DC-link
system in Matlab/Simulink. Filter and grid are implemented as three-phase sys-
tems in the (a,b,c)-reference frame (instead of Eq. (11.6), for details see [9]). The
DC-link dynamics are as in Eq. (11.2). For given filter voltage reference uabc

f ,ref [V]3

(coming from the current PI controllers), the pulse width modulation (PWM) gen-
erates the corresponding switching patterns sabc

g [1]3 for the converter. To estimate
angle φg [rad], angular velocity ωg [rad/s] and amplitude ûg [V] of the three-phase
grid voltage uabc

g [V]3, a phase-locked loop (PLL) is implemented (see [9] or [24,
Chap. 8]). The angle φg [rad] is required for the grid voltage orientation of the
k = (d,q)-reference frame. Angular velocity ωg [rad/s] and voltage amplitude ûg
are needed for the compensation of the cross-coupling (see Eq. (11.6)) in the cur-
rent control-loops to decouple the idf [A]- and iqf [A]-dynamics.7 With the Park and
Clarke transformation in Eq. (11.1), the three-phase signals are transformed to the
k = (d,q)-reference frame and vice versa (grid voltage orientation). The current
PI controllers are tuned according to the Magnitude Optimum which, with current
decoupling feedforward control, allows to approximate the current control-loop dy-
namics by Eq. (11.3) (see [9] and Assumption (A.3)). Implementation and system
data is collected in Table 11.1.

7 Note that an ideal decoupling is not feasible e.g. due to delays and non-causal compensation
terms. For details see [9].
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description symbols & values (with unit)

Implementation data in Matlab/Simulink
solver (fixed step) ode4 (Runge-Kutta)
fixed-step size h = 2×10−6 s (fundamental sample time)

System data
grid ûg = 250V, ωg = 2π50 rad

s (balanced)
filter Rf = 5×10−3 Ω, Lf = 3.6×10−3 H
converter fpwm = 8×103 Hz, Cdc = 400×10−6 F

udc,min = 500V, udc,max = 800V
current control Tapp = 1.25×10−4 s (implementation as in [9])

idf ,min =−277A, idf ,max =+275A

Controller design data
classical PI (11.27) VR = εVVR,max as in (11.43), Tn = εT Tn,min as in (11.46)

with εV = 0.8 and εT = 1.25
nonlinear PI (11.47) VR(idf ,udc) as in (11.60), Tn(idf ) as in (11.61)

with λI =−200 rad
s and λR =−450 rad

s

Table 11.1 Implementation, system, and controller design data (if not stated otherwise)

The classical DC-link PI controller in Eq. (11.27) is implemented in state space.
The controller parameters are listed in Table 11.1. The factors εV = 0.8 and εT =
1.25 are the stability margins as introduced in Eq. (11.43) and in Eq. (11.46), re-
spectively (see Fig. 11.5).

The nonlinear DC-link PI controller is implemented as in Eq. (11.47). Its varying
gains as in Eq. (11.60) and in Eq. (11.61) are adjusted online with respect to the
actual measurements of idf (t) and udc(t). For “online pole placement”, the desired
poles were chosen as listed in Table 11.1.

Remark 11.6. In stand-alone operation of the airborne wind energy system (AWES),
the AWES usually operates as voltage source (not as current source as described
above). Therefore, the grid-side voltage source inverter comes with an LC-filter and
the filter output voltage is controlled by an outer control loop. In this case, the DC-
link controller must be implemented on the machine side. DC-link controller design
on machine side is slightly more complex (due to the nonlinearity of the machine
and the aerodynamical torque) but, in principle, very similar to the presented results;
in particular, the possible non-minimum phase behavior of the DC-link dynamics
remains and imposes the most severe challenge to controller design and stability.

11.6.2 Simulation Experiments

To illustrate and evaluate the control performance of classical and nonlinear DC-link
PI controller, four simulation experiments are implemented in Matlab/Simulink:
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(E1) Comparison of the control performance of the classical PI controller in Eq. (11.27)
and the nonlinear PI controller in Eq. (11.47) for decreasing values of the
DC-link capacitance Cdc ∈ {800×10−6 F, 600×10−6 F, 400×10−6 F} (see
Fig. 11.8).

(E2) Disturbance rejection capability of the nonlinear PI controller given in Eq. (11.47)
under parameter uncertainties:

• ±30% parameter uncertainty in the DC-link capacitance Cdc (see Fig. 11.9),
• ±30% parameter uncertainty in filter resistance Rf (see Fig. 11.10), and
• ±30% parameter uncertainty in filter inductance Lf (see Fig. 11.11).

(E3) Set-point tracking performance of the nonlinear PI controller in Eq. (11.47)
under parameter uncertainties:

• ±30% parameter uncertainty in the DC-link capacitance Cdc (see Fig. 11.12),
• ±30% parameter uncertainty in filter resistance Rf (see Fig. 11.13), and
• ±30% parameter uncertainty in filter inductance Lf (see Fig. 11.14).

(E4) Control performance of the nonlinear PI controller in Eq. (11.47) for a real
(measured) machine power flow (see Fig. 11.15).

11.6.2.1 Discussion of Experiment (E1)

Experiment (E1) compares the disturbance rejection capabilities of the classical
and nonlinear DC-link PI controllers. The simulation results for the experiment
are depicted in Fig. 11.8. The following signals are shown: machine power pm
(with changing sign acting as disturbance, see first sub-plot) and the DC-link volt-
age udc for three different values of the DC-link capacitor Cdc = 800×10−6 F (see
second sub-plot), Cdc = 600×10−6 F (see third sub-plot) and Cdc = 400×10−6 F
(see fourth sub-plot). For all three values of Cdc, the control performance of the
nonlinear PI controller is superior to the classical PI controller. Its disturbance re-
jection capability is (much) faster and exhibits (much) smaller under-/overshoots
after a step-like change of the machine power. Although the classical PI controller
is re-tuned for each value of Cdc, for Cdc = 400×10−6 F, it is no longer capable to
stabilize the closed-loop system. It becomes unstable after 0.2 s, whereas the nonlin-
ear PI controller is able to compensate for the rapid changes in the machine power
for all three capacitances. The online adjustment of the controller parameters results
in a faster and more accurate disturbance rejection even for the smallest DC-link
capacitance Cdc = 400×10−6 F.

Remark 11.7. Due to the unstable closed-loop system behavior for the capacitance
Cdc = 400×10−6 F, the classical PI controller will no longer be considered. In the
upcoming experiments, solely the smallest DC-link capacitance Cdc = 400×10−6 F
will be used.
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Fig. 11.8 Comparison of the control performance of the classical PI controller in Eq. (11.27)
and the nonlinear PI controller in Eq. (11.47) for decreasing values of the DC-link ca-
pacitance: Cdc = 800×10−6 F (second sub-plot), Cdc = 600×10−6 F (third sub-plot) and Cdc =
400×10−6 F (fourth sub-plot). The classical PI controller is tuned for each value of Cdc separately

11.6.2.2 Discussion of Experiment (E2)

Experiment (E2) investigates the disturbance rejection capability of the nonlinear
PI controller under ±30 % parameter uncertainties in DC-link capacitance, filter
resistance and filter inductance for step-like changes in machine power pm and re-
active power qpcc (both act as disturbances on the DC-link dynamics). The param-
eter uncertainties are implemented in such a way that the nonlinear PI controller
parameters in Eq. (11.60) and in Eq. (11.61) use the (estimated) values Cdc, Rf
and Lf whereas the physical system is modeled with the “real” values given by
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Fig. 11.9 Disturbance rejection of nonlinear DC-link PI controller in Eq. (11.47) for±30% uncer-
tainties in the DC-link capacitance Cdc,real = γCdc where γ = 0.7, γ = 1.0, γ = 1.3

Cdc,real = γCdc, Rf ,real = γRf and Lf ,real = γLf . The factor γ ∈ {0.7, 1, 1.3} is varied.
Each value has its own color: γ = 0.7, γ = 1.0, γ = 1.3.

The simulation results for uncertainties in Cdc,real = γCdc, Rf ,real = γRf and
Lf ,real = γLf are shown in Fig. 11.9, Fig. 11.10 and Fig. 11.11, respectively. The
depicted signals are (from top to bottom) machine power pm, DC-link voltage udc,
electrical power ppcc at the point of common coupling (PCC), reactive power qpcc at
the PCC, and filter currents idf and iqf .
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Fig. 11.10 Disturbance rejection of nonlinear DC-link PI controller in Eq. (11.47) for ±30% un-
certainties in the filter resistance Rf ,real = γRf where γ = 0.7, γ = 1.0, γ = 1.3

The nonlinear PI controller performs well for all three cases. The closed-loop
system remains stable. The disturbances are rejected quickly. The step-like changes
in the reactive power have (almost) no effect on the DC-link voltage. Parameter
uncertainties in Cdc (see Fig. 11.9) affect the set-point tracking control performance.
For the case Cdc,real = 0.7Cdc, the DC-link voltage exhibits the largest deviations
(over-estimation of the capacitance). The other signals are (almost) not influenced.

Parameter uncertainties in Rf (see Fig. 11.10) are negligible. For the three cases
γ ∈ {0.7, 1, 1.3}, all depicted signals are (almost) identical.
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Fig. 11.11 Disturbance rejection of nonlinear DC-link PI controller in Eq. (11.47) for ±30% un-
certainties in the filter inductance Lf ,real = γLf where γ = 0.7, γ = 1.0, γ = 1.3

Parameter uncertainties in Lf (see Fig. 11.11) affect the set-point tracking control
performances slightly, whereas reactive power and q-component of the current show
significant deviations. Here, for Lf ,real = 1.3Lf (under-estimation of the inductance),
the largest peaks are visible.
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Fig. 11.12 Set-point tracking performance of the nonlinear PI controller in Eq. (11.47) under
±30% uncertainties in the DC-link capacitance Cdc,real = γCdc where γ = 0.7, γ = 1.0,

γ = 1.3

11.6.2.3 Discussion of Experiment (E3)

Experiment (E3) illustrates the set-point tracking performance of the nonlinear PI
controller under ±30 % parameter uncertainties in Cdc, Rf and Lf for a constant
but positive machine power (i.e. the non-minimum phase case with pm > 0; motor
mode during reel-in phase). The parameter uncertainties are implemented in the
identical manner as for Experiment (E2), i.e. the physical system is modeled with
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Fig. 11.13 Set-point tracking performance of the nonlinear PI controller in Eq. (11.47) under
±30% uncertainties in the filter resistance Rf ,real = γRf where γ = 0.7, γ = 1.0,
γ = 1.3

the “real” values given by Cdc,real = γCdc, Rf ,real = γRf and Lf ,real = γLf where γ ∈
{ 0.7, 1.0, 1.3} is varied. The values of Cdc, Rf and Lf are used for
controller implementation and tuning.

The simulation results for uncertainties in Cdc,real = γCdc, Rf ,real = γRf and
Lf ,real = γLf are shown in Fig. 11.12, Fig. 11.13 and Fig. 11.14, respectively. The
plotted signals represent (from top to bottom) machine power pm, DC-link voltage
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Fig. 11.14 Set-point tracking performance of the nonlinear PI controller in Eq. (11.47) under
±30% uncertainties in the filter inductance Lf ,real = γLf where γ = 0.7, γ = 1.0,
γ = 1.3

udc, electrical power ppcc at the point of common coupling (PCC), reactive power
qpcc at the PCC, and filter currents idf and iqf .

The set-point tracking performance of the nonlinear PI controller performs is ac-
ceptable. Most important, the closed-loop system is stable for all three cases (see
Fig. 11.12, Fig. 11.13 and Fig. 11.14). The step-like changes in the reference volt-
age udc,ref are followed quickly with asymptotic accuracy. However, for positive
set-point changes at 0.2 s and 0.4 s, the non-minimum phase property of the closed-
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Fig. 11.15 Control performance of the nonlinear PI controller in Eq. (11.47) for a realistic (mea-
sured) machine power flow pm (acting as unfiltered input to the grid-side electrical system)

loop system can be clearly observed: The DC-link voltage udc decreases before it
increases. Moreover, reference changes affect active and reactive power control dur-
ing transients.

Parameter uncertainties in Cdc (see Fig. 11.12), in Rf (see Fig. 11.13) and in Lf
(see Fig. 11.14) have only small influence on the set-point tracking performance.
Stability is not affected at all.
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11.6.2.4 Discussion of Experiment (E4)

Experiment (E4) illustrates the control performance of the nonlinear PI controller
under the most realistic conditions. The utilized machine power pm was measured
by the TU Delft Kite Power group with their demonstrator on 23rd June 2012 (see
Fig. 11.2). The simulation results are shown in Fig. 11.15 (from top to bottom): ma-
chine power pm, DC-link voltage udc, electrical power ppcc at the point of common
coupling (PCC), reactive power qpcc at the PCC, filter currents idf and iqf .

Both operation modes are simulated: (a) generator mode during the reel-out
phase with pm(t) < 0 for t ∈ [1082s,1150s) and (b) motor mode during reel-in
phase with pm(t) > 0 for t ∈ [1150s,1218s]. The DC-link voltage stays within a
2% band around its reference of udc,ref = 700V. At 1142s, due to the high, step-
like change in the reactive power qpcc, the DC-link voltage spikes up to ≈ 712V
which gives the largest deviation of 12 V from udc,ref = 700V (i.e. a relative error of
≈ 1.7%). Concluding, the nonlinear PI controller achieves a very fast and accurate
control performance, also, for real data (measured machine power).

Remark 11.8. Note that the noise in Fig. 11.15 is not due to the online adjustment of
the controller gains. The noise is induced by (i) the noisy machine power pm (see top
of Fig. 11.15: the provided measurement data was not filtered and directly used as
input to the simulation model) and (ii) the switching behavior of the voltage source
inverter which leads to ripples in current and power.

11.7 Conclusion

This chapter discusses two different PI controllers for DC-link voltage control: the
classical PI controller with constant parameters and a nonlinear PI controller with
online parameter adjustment. DC-link voltage control is a non-trivial task due to the
nonlinear and possibly non-minimum phase DC-link dynamics (when power flows
from the grid to the DC-link). For both PI controllers, the nonlinear system behav-
ior gives different bounds on the choice of the controller parameters. The bounds
are derived based on physical system properties (such as admissible currents and
DC-link voltages). A comparison of the controllers shows that the classical PI con-
troller becomes unstable for decreasing DC-link capacitances whereas the nonlinear
PI controller remains stable. Moreover, the nonlinear DC-link PI controller is (very)
robust to parameter uncertainties in filter resistance, filter inductance and DC-link
capacitance. Concluding, the implementation of the nonlinear PI controller, com-
pared to the classical PI controller design, seems promising since it is more robust
and stable and allows the installation of smaller capacitances which brings econom-
ical benefit.



274 Korbinian Schechner, Florian Bauer and Christoph M. Hackl

Nomenclature

R,C real, complex numbers.

x := (x1, . . . ,xn)
> ∈ Rn column vector, n ∈ N where > and := mean

‘transposed’ (interchanging rows and columns
of matrix or vector) and ‘is defined as’.

0n ∈ Rn zero vector.

a>b := a1b1 + · · ·+anbn scalar product of the vectors a := (a1, . . . ,an)
>

and b := (b1, . . . ,bn)
>.

‖x‖ :=
√

x>x =
√

x2
1 + · · ·+ x2

n Euclidean norm of x.

A ∈ Rn×n (square) matrix with n rows and columns.

A−1 inverse of A (if exists).

det(A) determinant of A.

spec(A) spectrum of A (eigenvalues of A).

In ∈ Rn×n := diag(1, . . . ,1) identity matrix.

L ∞(I;Y ) space of (essentially) bounded functions with
norm ‖f‖∞ := ess-supt∈I ‖f(t)‖ (essential supre-
mum). Simple example: For a piecewise contin-
uous function f(·)∈L ∞(I;Y ), there exists a pos-
itive constant c f > 0, such that supt∈I ‖f(t)‖≤ c f
for all t ∈ I. Hence, f(·) is bounded for all t ∈ I.

α
(#)
= β equivalence of α and β follows directly by in-

voking Eq. (#) (same notation is also used for

relations, e.g.
(#)
< ,

(#)
≤ ,

(#)
≥ and

(#)
>).

x [X]n physical quantity x ∈ Rn, each of the n elements
has SI-unit X.

ξξξ abc :=
(
ξ a, ξ b, ξ c

)> ∈ R3 signal ξξξ abc (may represent currents and volt-
ages, i.e. ξξξ ∈ {i,u}) in the three-phase (a,b,c)-
reference frame.

ξξξ s :=
(
ξ α , ξ β )> ∈ R2 signal ξξξ s in the stator-fixed (α,β )-reference

frame.

ξξξ k =
(
ξ d , ξ q

)> ∈ R2 signal ξξξ k in the arbitrarily rotating k = (d,q)-
reference frame.
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