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Abstract

A mathematical model of a kite connected to the ground by two straight
tethers of varying lengths is presented and used to study the traction force
generated by kites flying in cross-wind conditions. The equations of motion are
obtained by using a Lagrangian formulation, which yields a low-order system
of ordinary differential equations free of constraint forces. Two parameters
are chosen for the analysis. The first parameter is the wind velocity. The
second parameter is one of the stability derivatives of the aerodynamic model:
the roll response to the sideslip angle, known also as effective dihedral. This
parameter affects significantly the lateral dynamics of the kite. It has been
found that when the effective dihedral is below a certain threshold, the kite
follows stable periodic trajectories, and naturally flies in cross-wind conditions
while generating a high tension along both tethers. This result indicates that
kite-based propulsion systems could operate without controlling tether lengths
if kite design, including the dihedral and sweep angles, is done appropriately. If
both tether lengths are varied out-of-phase and periodically, then kite dynamics
can be very complex. The trajectories are chaotic and intermittent for values of
the effective dihedral below a certain negative threshold. It is found that tether
tensions can be very similar with and without tether length modulation if the
parameters of the model are well-chosen. The use of the model for pure traction
applications of kites is discussed.
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1. Introduction

Kites have been used for recreational purposes since antiquity and, recently,
they have been the subject of intensive research for engineering applications.
Several kite scenarios require reaching high tether tensions by flying the kite
in cross-wind conditions. One of them is the pulling of cargo ships [1, 2]. An-
other one is airborne wind energy generation, in which tethered flying devices
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are employed to extract the kinetic energy of wind at higher altitudes than
conventional wind turbines can reach. A main advantage of the technology is
the lower material consumption and smaller environmental footprint. Further-
more, the capacity factor can be significantly larger than that of tower-based
turbines because of the stronger and more persistent wind at higher altitude
and the adaptability of the tethered energy harvesting system to the wind re-
source [3, 4, 5]. The two pursued concepts are ground-based energy conversion,
in which the traction power of the flying device is converted into electricity by
a generator on the ground, and airborne energy conversion by wind turbines
mounted on the flying device [6, 7]. Most of the implemented concepts are
based on a tethered wing as aerodynamic lifting device. The wing is the equiv-
alent of the wind turbine rotor blade with the crucial difference that the blade
is constrained to a rotational motion around the turbine hub while the wing is
flown on a certain path required by the specific conversion concept. Most of the
implemented airborne wind energy concepts are based on pumping cycles com-
prising a power-generating reel-out phase and a power-consuming reel-in phase
[8]. A low power consumption throughout the reel-in phase needs a depowered
kite, i.e., angle of attack control to decrease the aerodynamic force.

To analyze the performance of the kite during reel-out and reel-in phases
and to assess the flight dynamic feasibility of a certain trajectory a variety
of different modeling approaches have been developed in the past. The type of
wing varies from highly flexible membrane wings, without any rigid components,
to rigid wings. Flexible membrane wings are controlled by actuation of bridle
lines which allows rotation and deformation of the entire wing, while rigid wings
are generally steered like aircraft using aerodynamic control surfaces [5]. For
an accurate simulation of the kite behavior the complex interaction phenomena
between airflow and tensile membrane structure have to be taken into account.
Breukels [9] has presented a multibody model of a Leading Edge Inflatable
tube kite and its bridle line system in combination with a correlation-based
aerodynamic load model to predict aeroelastic phenomena during flight. On
the other hand, Bosch et al. [10] has used a finite element model of this kite
with the same aerodynamic load model. To avoid the complexity of modeling
wing deformation de Groot et al. [11] has combined state reduction with a
model identification approach. A different approach has been chosen by Fechner
et al. [12] who model the structural behavior of kite, bridle lines and main
tether by a particle system interconnected by elastic springs and dampers. The
aerodynamic loading is discretized by either a single or three different panels,
representing two different levels of detail to the problem of kite aerodynamics.

This work constructs a mathematical model of a kite linked to the ground
with two tethers of variable lengths. Two-line kite simulators are specially
relevant because they can be applied to airborne wind energy generation with a
generator on the ground and also they can be employed for traction applications
like pulling cargo ships. Regarding the former, a two-line kite can be steered
by varying the line lengths and depowered by entirely releasing one line and
retracting the wing in a flagged state using the other line [14]. Two-line kites
with movable tip attachment points, as the one shown in Fig. 1, can also be
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Figure 1: Two-line kite with rack-and-pinion system to move tip attachments of lines [13]

depowered [13]. Two-line kite models for static [15] and dynamic [16] studies
have been reported in the literature. In the latter, the kite was taken as a single
point and tether lengths were assumed to be directly related with a lateral angle
appearing in the aerodynamic forces. Our dynamic model considers the kite as
a rigid body and incorporates self-consistently in the equations the variations
of the tether lengths, as discussed below.

The first goal of this work is the development of a mathematical model
that can be combined with other tools like periodic orbit and nonlinear optimal
control solvers [17]. For these cases, very detailed simulators – as the one cited in
the previous paragraph – can be too demanding from a computational point of
view. Compact, efficient, and robust models are more convenient for preliminary
design phases, which typically require extensive parametric analysis. The second
goal is the analysis of kite dynamics in cross-wind conditions that, as shown by
the model, can be driven by passive (kite aerodynamic design) and active (tether
length modulation) means.

Keeping low the complexity of the simulator requires inevitably to substitute
the flexible tethers by inextensible and straight bars. This is a valid approxi-
mation if the tether is short enough. However, this approach introduces some
difficulties because the kite should satisfy at any instant the constraints imposed
by the rigid tethers. If a classical-mechanics formulation is used, then one finds
a set of ordinary differential equations, coming from kite dynamics, coupled
with a nonlinear set of algebraic equations due to the constraints. Their self-
consistent solutions typically involve the implementation of a Newton-Raphson
algorithm at each time step during the integration. For these reasons, many
kite simulators derived the equations of motion using analytical mechanics (La-
grange formulation)[18, 19, 20, 21, 22]. For ideal constraints, this technique
yields a compact and robust set of ordinary differential equations.
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The work is organized as follows. Section 2 describes in detail the hypothesis
of the model, the coordinate and frames of references used, and the Lagrange
equations of a two-line kite. Section 3 shows that, even with constant tether
lengths (no control law is implemented), the kite can naturally fly in cross-wind
conditions and generate a high tension at the tethers. Section 4 explores kite
dynamics and high tensions generation by implementing a periodic control law.
The suitability of the model with periodic orbit solvers is shown. Section 5
summarizes the main results and discusses some applications and future works.

2. The kite system model

2.1. Hypotheses and notation

This section presents a compact dynamical model of a kite with two control
lines. For convenience, we will make an extensive use of dimensionless variables
and some shortenings to improve the legibility of the work. In particular, we
will denote with a dot the derivative of any variable, say a, with respect to
the dimensionless time � = t

p
g=L0, ȧ = da=d� . Here g is the gravitational

acceleration and L0 the initial length of one of the tethers. For brevity, the sine
and cosine of an angle � will be written as s� and c�. Most of the lower case
and capital letters denote variables without and with dimensions, respectively.
The unit vectors that define a frame of reference are denoted as i α, j α and
kα, with � a subscript that identifies the reference frame. We will also make
extensive use of rotation matrices that relate the vector components in different
basis. For instance, the components of a vector a = xE i E + yE j E + zEkE =
x1i 1 + y1j 1 + z1k1 are related by
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where R 1E is the rotation matrix that relates the components in the frames 1
and E to be defined below.

The model considers a rigid (flexibility effects are ignored) power kite of mass
m, surface S, chord c, wingspan b. For convenience we introduce a reference
frame, named the body frame SB , linked to the kite and with origin at its center
of mass G. The SB axes coincide with the principal axes of inertia of the kite
at G. Therefore, the moment of inertia tensor of the kite about point G in the
body frame is a diagonal matrix. We write it as I G = mL2

0�G, with �G the
dimensionless matrix

�G =

0

@
�x 0 0
0 �y 0
0 0 �z

1

A : (2)

The second hypothesis of the model is related to the physical properties of
the tethers. Their inertial, flexibility and elastic effects are ignored. The tethers,
taken as rigid massless bars, connect the ground fixed point OE with the kite
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