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Abstract   Airborne Wind Energy (AWE) is a new approach to harvest stronger 

wind streams at higher altitudes for renewable energy. This paper reviews recent 

developments in this field. Conventional wind energy and current constrains for its 

development are discussed and airborne wind energy as an appropriate solution in 

the literature is reviewed. Different AWE technologies are reviewed and appraised 

and other related issues such as transmission and curtailment are discussed.      

Keywords Airborne Wind Energy (AWE), Synchronous Generator, direct inter-

connection, Power to gas 

1- Introduction 

At present, with rising concerns about global warming and limited fossil re-

sources, renewable energy is more popular than ever. In recent decades, renewable 

energy has seen faster growth than other forms of energy production. Among dif-

ferent non-hydro renewable energies, wind energy has seen the biggest absolute 

increase. It is anticipated that the share of wind energy in total worldwide elec-

tricity generation will be 4.5% in 2030 and that wind power will be the second 

most significant source of renewable electricity production after hydropower (In-

ternational Energy Agency 2014).   

Despite the rapid development of wind energy in recent decades, it is still expen-

sive and most wind energy projects encounter financing problems (International 

Energy Agency 2014). Investors are demanding more profit from wind energy 

projects and researchers are looking for solutions to decrease the total cost of wind 

energy by reducing cost of construction, repair & maintenance and transmission to 

grid. According to (The European Wind Energy Association 2009), 91% of a typi-

cal wind turbine cost is allocated to the turbine, grid connection and foundation 

costs forming 75.6%, 8.9% and 6.5% respectively. Airborne wind energy can pro-

vide a significant cost reduction in turbine and foundation costs. Also, by using 

new technologies such direct interconnection and hydrogen production from cur-

tailed winds, grid connection cost will be reduced considerably.  

In this paper, different airborne wind energy technologies are reviewed and recent 

developments in utilizing curtailed winds and a new interconnection scheme are 

presented. 
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2- Airborne Wind Energy 

An AWE system typically consists of a free flying airborne element such as a kite, 

glider or floating horizontal axis wind turbine, which is connected to ground 

through a tether. The first study of airborne wind energy was conducted in 1930 in 

California, USA, though the first attempt to produce electricity from an airborne 

wind energy device was in Minnesota, USA; a generator was installed on a bal-

loon and it was capable of producing 350W electrical power (Manalis 1976). Loyd 

in 1980 reported the first analysis of kite for generating electrical energy. He mod-

eled large-scale power production by means of an aerodynamically efficient kite. 

According to his work with use of a tethered wing as big as a C-5A aircraft, it is 

possible to generate 6.7 MW of electrical energy with a 10m/s wind (Loyd 1980).      

The primary motivation for developing airborne wind energy systems is accessing 

stronger winds at higher altitudes. With increasing altitude, the speed of wind in-

creases and winds are more consistent and less turbulent. At altitudes above 200m, 

wind energy devices can provide the highest capacity factor at lower cost (Archer 

et al. 2009). According to (1) the wind power density at altitude (WPDh) increases 

to the cube of wind speed (Archer 2013). This cubic relationship can be seen also 

in figure 1 where increase of wind speed and power density with altitude is illus-

trated. This is the main motivation driving AWE device development; generating 

wind energy at higher altitude than possible with civil structures. With even small 

increases in the height of the wind energy device, the generated power increases 

significantly. 

 𝑊𝑃𝐷ℎ =
1

2
𝜌𝑉𝑤_ℎ

3                                                                                                   (1) 

In (1),  is the air density and Vw_h is the wind speed at altitude. 
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Fig. 1. (a) Wind speed and power density with altitude, (b) Wind density 

and power density percentage increase with altitude (Coleman 2014). 
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A. Ampyx Power 

Ampyx Power is a Dutch company that is developing a pumping mode AWE sys-

tem with a tethered rigid wing glider called PowerPlane. Pumping mode AWE is a 

reciprocating operation which consists of two phases; the pumping phase and re-

covery phase. During the pumping phase, a tethered glider pulls on the ground sta-

tion tether drum through the tether. The drum is connected to generator by a 

drivetrain. With rotation of the tether drum, the generator will rotate, producing 

electricity. When the tether reaches the maximum length, the glider will change its 

flight path toward ground station and tether will be rewound onto the drum. This 

phase is called the recovery phase. Power is consumed during the recovery phase 

but it is considerably less than generated power in pumping mode. Ampyx Power 

AWE concept is demonstrated in figure 2 (Sieberling 2013). This company devel-

oped a prototype in 2013. The proposed system is a 12 kW PowerPlane which is 

described as a six degree of freedom rigid wing system. The electrical power take-

off for this prototype is a single direct driven electrical machine with grid connec-

tion through a power converter (Ruiterkamp et al. 2013). Ampyx Power is plan-

ning to develop two 250kW and 3MW prototypes by 2018 (Ampyx Power 2015). 

 

 

 

 

  

 

 

B. WindLift  

WindLift was founded in 2006 and developed a ground actuated kite control sys-

tem. This American company developed an AWE prototype which utilized a 40m
2
 

inflatable kite as the prime mover. The kite is tethered to a ground station by three 

tethers; one main tether that rotates the electrical generator and two steering teth-

ers that provide ground based steering actuation. This system is capable of produc-

ing 12kW peak electrical power form winds with speeds between 12 and 40 mph. 

The ground station of WindLift prototype is shown in figure 3 (Creighton 2012). 

As can be seen, the main tether is wound onto a drum which is connected to a 

generator. In the power phase, the kite rotates the generator through the tension in 

tether. In the recovery phase, the generator operates as a motor, winding the tether 

onto the drum. The WindLift current prototype uses a 90cm diameter drum, which 

is connected to 60kW motor-generator built originally for a hybrid electric bus. In 

the future, WindLift plan to improve the wing characteristics to increase power in 

generation phase and decrease consumption during recovery phase (WindLift 

2015). 

 

Fig. 2. Ampyx PowerPlane (Ampyx Power 2015) 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Creighton%2C%20R..QT.&newsearch=true
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C. EnerKite 

EnerKite was founded in 2010 in Germany. The core team behind EnerKite has 

been active in the area of AWE related systems since 2002. In 2008, Aeroix and 

Festo tested a prototype called ‘CyberKite’. This prototype used an innovative hy-

brid kite designed with a bionic stingray shape and helium supported wings. The 

development of the control mechanism for this 24m
2
 kite ended in 2010 after sev-

eral hundred hours of testing (Bormann et al. 2013).      

After the establishment of EnerKite this company drew on its experiences from 

CyberKite to develop a new prototype ‘EK30’. This AWE device is a 30kW pro-

totype which is driven by a three line ground actuated kite power system. This 

prototype has been developed as a mobile AWE system mounted on a vehicle and 

works off-grid using battery storage. It can operate at altitudes between 100 and 

300m and uses a 30m
2 

wing (Bormann et al. 2013 and EnerKite 2015). The EK30 

is shown in figure 4. 

EnerKite is planning to develop two new prototypes in 2017 and 2018. EK200 is 

designed to generate 100kW electricity as a standalone system or within an isolat-

ed grid. The wing area of this system is 30m
2
 and it will be capable of operating in 

wind speeds between 3m/s and 20m/s. EK1M is a large-scale commercial product 

which is planned to be on the market by 2018. This system can generate 500kW 

electrical energy connected to a power grid. The EK1M is projected to use a 

125m
2
 area kite and it will operate in wind speeds from 3m/s to 25m/s. The maxi-

mum operating altitude for this system will be 300m (Bormann et al. 2013 and 

EnerKite 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

D. SkySails 

SkySails was established in 2001 to develop airborne wind energy devices for ship 

propulsion augmentation. Between 2001 and 2006, they tested small scale proto-

types on various vessels. In 2013 SkySails developed a ship towing kite which is 

 

Fig. 4. EnerKite (Bormann et al. 2013) 

 

Fig. 3. WindLift ground station (Creighton 2012) 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Creighton%2C%20R..QT.&newsearch=true
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capable of displacing up to 2MW propulsion power. This 320m
2
 kite can allow a 

ship to reduce fuel oil consumption by up to 10 tons per day. This company has 

extended its interests to electrical power generation. In 2011, SkySails developed 

a 55kW prototype for producing electrical energy. The prototype is a pumping 

mode airborne wind energy system, which uses a single motor/generator for elec-

trical power takeoff and kite recovery in the pumping mode cycle. SkySails are 

planning to develop a 1MW offshore airborne wind energy device, which would 

use a 400m
2
 kite on a 1000m tether. SkySails are considering the development of 

the first offshore AWE farm with over 7 MW per device (SkySails 2015 and Fritz 

2013).      

E. Makani Power 

Makani Power, a Google X company, has developed a unique type of airborne 

wind energy, which is called an Airborne Wind Turbine (AWT). The AWT is a 

rigid wing which carries eight propeller/turbines with each connected to mo-

tor/generator. During launch, the electrical machines drive the propellers consum-

ing power to bring the system from the ground station to the desired starting alti-

tude. The propellers are then adjusted to act as turbines driving the electrical 

machines as generators, producing electricity. The generated power is transferred 

to the ground station through the tether. The tether is made of conductive alumi-

num wires and high strength carbon fiber core (Makani Power 2015). In addition 

to power transmission, the tether provides communications between AWT and 

ground station. Installing electrical power take off machinery on the wing increas-

es the airborne system mass. For a 100kW AWT with 8 turbines the overall 

weight of power electronics converters and generators/motors on the airfoil would 

be 70 kg and tether weight will be 320 kg. The optimal tether voltage for mini-

mum mass is 8kv DC (Kolar et al. 2011). Makani Power has tested two 10 kW and 

30kW prototypes and currently they are working on an AWT device with 600kW 

rated power in an 11.5 m/s wind, which operates at altitudes between 140m and 

310m with a 145m circling radius (Makani Power 2015).  
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Fig. 5. SkySails productions, (a) Ship propulsion system,  

(b) airborne power generator (Fritz 2013) 
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F. Sky WindPower 

Sky WindPower is developing an innovative type of airborne wind energy device. 

This system is an autonomous quad-copter, which consumes electrical energy to 

reach the appropriate altitude for power generation. When the device arrives at the 

desired altitude, it inflects itself to the wind at a specific pitch angle to allow the 

rotors to be driven by the wind, consequently generating electrical power and lift 

simultaneously. Their device, which is called Wind Airborne Tethered Turbine 

System (WATTS), is nearly ready for customer testing and can generate 240kW 

nominal electrical power at altitudes up to 2000m with high wind speeds from 

9mph to greater than 65 mph (Sky Wind Power 2015). WATTS is designed to op-

erate in off-grid sites such as military outposts, naval vessels, mining operation, 

oil drilling platforms, agricultural, scientific and research facilities. In addition, 

WATTS will be capable of performing other roles such as “Eye in the Sky” secu-

rity systems, remote antenna elevation, atmospheric sampling, weather monitor-

ing, etc. (Sky Wind Power 2015 and Roberts et al. 2007)  

G. Academic Research 

In several universities, airborne wind energy is under investigation. TU Delft is 

one of the leading universities working on AWE systems. In 1999, they undertook 

their first AWE system analysis (Ockels 2001 and 2004). This system consists of a 

number of wings that are connected to each other by a single tether driving a 

ground located generator. In 2013, a 20kW rated ground station and kite control 

system for a pumping mode AWE prototype was developed by researchers in TU 

Delft (Jehle et al. 2014).  Developing novel control methods, ground station and 

kite design are other issues that are under investigation in TU Delft (Lansdorp et 

al. 2007, Williams et al. 2008 and Fechner et al. 2015).  

In Politecnico di Torino, a prototype called KiteGen has been simulated and test-

ed. Two different topologies have been presented by researches in Politecnico di 

Torino, yo-yo and carousel configuration (Canale et al. 2010). The yo-yo configu-

ration is the same as pumping mode AWE, while the proposed carousel configura-

tion consists of several airfoils, each one connected to a kite steering unit (KSU) 

placed on a vehicle moving along a circular rail path. Each airfoil pulls one vehi-

cle on the carousel while the vehicles maintain constant separation from each oth-

er on the rail. Electrical power is generated through motor/generators driven by 

the wheels of each rail vehicle (Canale et al. 2006 and 2007). 

Neural network controllers for controlling airborne wind energy systems have 

been developed at the University of Sussex. The evolution of neural network con-

trollers has been carried out by genetic algorithms. It has been shown that contin-

uous time recurrent networks (CTRNN) are capable of being trained for flying 



7 

AWE kites in an appropriate repetitive trajectory even when the length of tether is 

changing (Furey 2011and Furey et al. 2007). 

A two-line kite control algorithm has been developed in KU Leuven. This control-

ler is capable of controlling the lateral angle of kite and feedback is used to stabi-

lize the orbit of the kite. For monitoring of the motion of the kite, polar coordi-

nates are used in four degrees of freedom (Diehl et al. 2001). Optimization of 

towing kites, developing a non-linear model of predictive control, new approaches 

for launch and recovery of glider AWE systems and trajectory optimization of 

AWE devices are other research works which have been carried out at KU Leuven 

(Geebelen et al. 2012, Houska et al. 2006,2007 and Ilzhoefer et al. 2007). In addi-

tion, in (Zanon et al. 2013) the use of two airfoils for airborne wind energy sys-

tems on a single main tether has been investigated. 

 

A new power take off method for pumping mode airborne wind energy has been 

developed at the University of Limerick. This AWE prototype does not reverse the 

generator to perform the recovery task, but rather this is performed by a fractional 

scale recovery motor. In this arrangement, the two pumping mode operations are 

separated and performed by optimally specified electrical machines for each task. 

Using a non-reversing generator is more suitable for power generation and deliv-

ery to grid especially at large scales. Furthermore, direct interconnection of AWE 

generators and distributed control for the flight of tethered kites have been devel-

oped at the University of Limerick (Coleman et al.  2013 and 2014) and remains 

an active area of research. 

Currently, six universities consisting of TU Delft, KU Leuven, TU Munich, ETH 

Zurich and University of Limerick and four industrial partners are cooperating in 

the AWESCO ITN, a Marie Skłodowska-Curie action under the Horizon 2020 

framework program of the European Union (AWESCO 2015).  This network is 

focused on the development and optimization of AWE technology and methods 

and will ensure the continued development of AWE within the EU.  

3-  Dispatch and curtailment  

Dispatching generated power is a challenge in dealing with airborne wind energy 

systems especially with offshore devices. Conventional wind energy technology 

deploys power converters in each unit where the generated power is converted to 

DC and recovered to gird compliant AC for supply to the distribution network. 

Using power converters for each unit will increase rate of failure and cost of sys-

tems, as according to (Spinato et al. 2009) the converter has the third highest fail-

ure rate among wind turbine subassemblies. In offshore airborne wind energy de-

vices, the failure rate and cost would be even more because of high expenses of 

offshore repair and maintenance and the novelty of the technology. In (Pican et al. 

2011) a new approach, called direct interconnection, has been proposed and tested 

for offshore wind energy systems. In this method, power converters are removed 

from the individual power devices and the generators are synchronized directly 
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onto an offshore power bus by means of a synchronization controller. After syn-

chronization, overall generated power is dispatched to on-shore station. In an on-

shore station, a back-to-back converter provides a grid-code compliant AC output 

from the interconnected offshore bus. This approach has been analyzed for pump-

ing-mode airborne wind energy systems in (Coleman et al. 2014) and conventional 

wind turbines in (Pican et al. 2011) with very good results.     

In a curtailment situation, wind is available but the grid operator does not allow 

the wind farm to dispatch the generated power to the grid. A wind turbine or AWE 

system might be curtailed when the transmission system is under loaded due to 

lack of demand. In this situation, the system is subjected to overvoltage conditions 

and network operators try to relieve this by decreasing power production on the 

network. Curtailment may also happen for other system reasons such as frequency 

control or market based protocols (Bird et al. 2014).     

During curtailment conditions, it may be possible to store energy locally rather 

than ceasing operation or reducing/curtailing generated power. Different methods 

for storing curtailed wind energy exist such as pumped hydroelectricity storage 

(PHES) (Deane et al. 2010) and compressed air energy storage (CAES) (Beaudin 

et al. 2010).  Power to gas (P2G) is a new approach, where curtailed wind energy 

is converted to methane gas which can be sold for gas network consumption, 

transportation, heating, etc. P2G systems convert electrical energy to hydrogen 

through an electrolysis process. The produced hydrogen is then converted to me-

thane by reaction with CO2 .The required CO2 could be achieved from different re-

sources such as ambient air, thermal power plant exhaust or biogas. The overall 

efficiency of power to gas conversion is between 55 and 80 percent depending on 

the efficiency of the electrolysis and methanation processes (Ahern et al. 2015). 

Winds in higher altitudes are more consistent and hence AWE systems can operate 

more often than conventional wind turbines. Since it is not always possible to dis-

patch generated power to grid, using power to gas technology would be very help-

ful technology for utilizing curtailed winds.      

4-  Conclusion  

Different AWE technologies have been reviewed. In some technologies, soft 

wings provide the mechanical prime mover while some others are using rigid 

wings to harness wind energy. AWE systems with rigid wings are more efficient 

and easier to control. In the case of soft wings, researchers are developing new 

kite models and construction methods to improve their efficiency. Using a pump-

ing mode operated ground station is the most popular electrical power take-off 

method. In some cases such as Makani AWT and Sky WindPower WATTS, gen-

erators are mounted on the wing. In these cases, high voltage tethers, increased 

weight and mechanical strength of cables for transmitting power from wing to 

ground station are fundamental challenges, especially in large-scale devices. 
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Dispatching generated power is a very significant factor in the cost of generated 

power. In the case of offshore AWE systems, dispatch becomes much more im-

portant because of the long distance from the shore and the high expenses of off-

shore repair and maintenance. Direct interconnection is an appropriate solution for 

reducing the cost of generated power by minimizing the number of power elec-

tronic converters offshore. Using curtailed wind energy for producing gas would 

be a very useful technology to store generated power by AWE devices during the 

periods when it is not possible to deliver electrical power to the grid.              

Various companies and universities are developing AWE systems with many 

promising commercial products by 2020. Despite the widespread developments of 

airborne wind energy systems, this technology is still very young and much work 

remains to move towards commercial devices.  
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