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Abstract— Airborne wind energy (AWE) is a promising
source of renewable energy, with a potential of offering great
and reliable energy yields. However, in addition to the usual
power intermittency of renewable source of energies, AWE
systems have a large and periodic fluctuation of their power
output, and even consume power at certain phases of their
orbit in some modes of power generation. These fluctuations
may become a significant obstacle to a large-scale deployment
of AWE systems in the power grid. For a large AWE farm, these
fluctuations can be mitigated by power averaging, at the ex-
pense of fixing the AWE systems orbit times. This requirement
removes the possibility for individual AWE systems within a
wind farm to optimize their orbit time for their specific, local
wind conditions, entailing a loss of performance. In order to
assess the viability of mitigating the power fluctuation by power
averaging at the wind farm level, this paper quantifies the loss
of performance it yields.

I. INTRODUCTION

Airborne Wind Energy (AWE) systems harvest wind
energy by means of tethered wings flying autonomously
in a crosswind fashion. By accessing the better and more
stable wind conditions present at high altitudes, the AWE
technology promises a more reliable wind power generation
than the classical wind-energy industry. Because AWE does
not require a tower or blades, it can be based on light-weight
constructions, hence reducing the material costs. The wings
are connected directly to a ground station by a tether. By
transmitting the thrust forces directly to the ground, the need
for building heavy and expensive foundations is reduced [1].

Two major AWE concepts are considered by the industry:
pumping and drag mode. Drag mode AWE systems are
based on on-board power generation and rigid-wing flying
crosswind circles or lemniscates at high velocities. The
power is generated by on-board turbine(s) operating at high
wind velocities and transferred to the ground station via the
tether [2].

Pumping mode AWE systems can use both rigid and soft
wings. The power is generated by exploiting the large lift
forces developed by the kite during fast cross-wind flight.
These forces are used in order to reel out the tether from a
winch attached to a generator. The power generation has to
be regularly interrupted to retract the wing and the tether.
This retraction phase typically consumes a fraction of the
power produced during the reel-out phase [3, 4].
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(a) Drag mode
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(b) Pumping mode

Fig. 1: Characteristic power generation for a wing in either
drag mode or pumping mode, generating an average power
output of 48,4 kW and 56.74 kW, respectively.

By its nature, the power generated by AWE systems is
fluctuating. Even for AWE systems in drag mode, which
do not go through a retraction phase, the power fluctuates
periodically during one orbit. This fluctuation is caused
by gravity and the wind shear, forcing the wing into a
dissymmetric flight pattern. AWE systems in pumping mode
have an even larger power fluctuation because the power
generation is cyclically interrupted for the retraction phase.
Fig.1 illustrates a simulated power generation profile of
drag mode and pumping mode respectively. The severe
intermittency due to the retraction phase in the pumping
mode can be observed in Fig. 1b.

A successful commercialisation and integration to the
power grid implies the installation of AWE farms. Ampyx
Power, as an example, is planning to repower the current
generation offshore wind parks with AWE [5]. Fluctuations
of the power generation in a plant have to be compensated by
other power plants in order to balance the power demand and
production, and to maintain the grid frequency [6]. Modern
power grids are used to deal with fluctuations arising from
well-established sources of renewable energies. However, the
power profiles of AWE systems, especially pumping mode,
are rather unusual compared to other sources of renewable
energy, and the future impact of AWE on the power grid is
unclear.

AWE farms at the multi mega-watt (MMW) scale may
reach a high level of penetration in future power systems,
hence the issue of grid integration needs thorough inves-
tigations. In order to ensure the power grid stability, all
connected power generation units have to follow certain grid
codes [7]. No grid requirement dedicated to AWE systems
has been formulated yet, but power outputs fluctuating
significantly and cyclically are likely to be a serious obstacle



to a large-scale integration of AWE systems. Future grid
codes are therefore expected to constrain AWE farms to
deliver a sufficiently smooth power output.

A tentative solution for AWE farms to deliver a less
fluctuating power consists in shifting the phase of the cyclic
operation of the different wings within the AWE farm in
order to balance the power fluctuations within the AWE farm
itself. E.g. for an AWE farm with pumping mode systems,
the periodical retraction phase of the various wings can be
shifted such that the power required for the retraction is
provided by the neighbouring AWE systems in the same
farm. This approach is simulated and illustrated in Fig. 2
where an example of shifting can be observed. In Fig. 2a
four AWE systems (grey) in pumping mode are controlled
to be phase-shifted by a quarter of their orbit time. This
phase-shifting adds up to a continuous total power (green),
eliminating the consumption periods. In comparison, Fig.
2b displays the same individual profiles without a phase-
shift, adding up to a much higher power variation than
with shifting. The power averaging effect introduced by
shifted operations tends to increase with the number of AWE
systems present in an AWE farm.

In an AWE farm, the individual systems encounter slightly
different wind conditions. Local wind variations translate
into change in speed of the individual wings resulting in
variations of the orbit time. The phase-shifted operation of
the individual wings in an AWE farm is then gradually
and non-uniformly modified over time. Because the wind
variations are stochastic, the phase-shifts of the individual
AWE systems in an AWE farm also become stochastic.
Additionally, the power output of a classical wind farm is
influenced by wake effects to a great extent [8]. However, the
effect on AWE systems is not known yet and therefore not
taken into account in this paper. In the future, wake models,
more realistic wind profiles and accurate airfoil models will
be implemented.

In a large wind farm, the combination of a great number
of power profiles having stochastic phase-shifts is expected
to deliver a fairly constant total power output with a rela-
tively high probability. However, it can also deliver dramatic
power variations with a non-negligible probability when the
combination of the individual phases end up in a poor
configuration. Because the phases are evolving slowly, such
a situation could last for several minutes. The industry
is considering addressing this problem by controlling the
phase-shift of the individual AWE systems such that a poor
combination of phases cannot occur. Such a scenario requires
that all systems in the farm follow the same trajectory and
orbit time, and reject the local disturbances on the phases
via feedback control. An alternative to this approach would
consider the joint optimization of the whole wind farm
for power generation vs. power smoothing. This approach
is, however, considered prohibitively complex to deploy
and thus the first approach, the phase-shift control will be
studied.

The economic viability of AWE will require the AWE
systems to be operated optimally. Individual AWE systems
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(a) Power summation (green) of
shifted trajectories (grey)
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(b) Power summation of
synchronised trajectories

Fig. 2: Possible summation of power generation profiles
of four systems with phase-shifted (left) and synchronised
(right) trajectories.

ought to continuously adjust their trajectories to the wind
condition in order to maximize their average power output.
Early results in AWE system control show some promising
approaches to achieve that [9, 10]. Unfortunately, the power
optimisation of individual AWE systems is in conflict with
phase control. Indeed, the optimal operation of a system
typically requires adjustments in the wing trajectory and
therefore in its orbit time. The system cannot be both
operated optimally and have a fixed phase. In this study, we
investigate this conflict, and quantify the loss of performance
that is expected from applying phase control in an AWE
farm. This paper compares the performance of an AWE farm
where the orbit times are fixed and optimum for the average
wind speed of the wind farm vs. an AWE farm where the
individual AWE systems are optimum with a free orbit time.
In the following, the two cases will be referred to as fixed
and free time operation. Quantifying the power loss for a
fixed-time operation is crucial for the AWE industry and
might guide the future control designs of AWE farms.

The paper is structured as follows. In Section II the power
optimisation of a single system and its formulation as a
parametric optimal control problem is presented. The optimal
cost at the solution is approximated as a second-order Taylor
expansion in order to perform sensitivity studies with respect
to the wind parameters. This will be used in Section II-B to
compute the expected power of an AWE farm in the fixed
and free-time mode. The results are presented in Section
III where the loss in power due to a fixed orbit time is
investigated for both drag mode and pump mode systems.
The power loss is quantified for different sizes, as a function
of the variance of the local wind variations and for different
average wind speeds. Finally, in IV conclusions are drawn.

II. METHOD

The wind profile for an individual AWE system in the farm
is described using the standard logarithmic wind profile [11]:

w = w0

(
h

h0

)z0

= (w0 + ∆w0)

(
h

h0

)z0+∆z0

(1)

where w is the wind at the height h, w0 ∈ R denotes the
base wind at a the reference height h0 and z0 ∈ R is the



aerodynamic roughness length. Note that there exists more
realistic models, but (1) is used here for simplicity.

The local variation in wind speeds ∆w0 within a farm is
assumed to be zero-mean gaussian distributed, with standard
deviation σw0 , i.e. individual systems in a farm have a base
wind w0 + ∆w0, where ∆w0 ∼ N (0, σ2

w0
) and w0 is

the average wind speed on the wind farm. The roughness
variation ∆z0 is also assumed to be zero-mean gaussian
distributed, i.e. N (0, σ2

z0), and models a non-uniform wind
shear within a farm. The optimal operation and performance
of an individual AWE system within a farm then depends on
the average base parameters p = (w0, z0) and their variations
∆p = (∆w0,∆z0).

A. Power optimisation problem

The optimal performance Φ? of a single AWE system is
computed by solving the periodic optimal control problem
(OCP)

Φ?(p, T ) = min
x,z,u

Φ(x, z, u, p, T ) (2a)

s.t. F (ẋ, x, z, u, p, T ) = 0, (2b)
c(x(0), x(T )) = 0, (2c)
h(x, z, u, p, T ) ≤ 0, (2d)

where F is the model of an individual AWE system in the
form of an implicit Differential-Algebraic Equation (DAE).
x, z collect its differential and algebraic states respectively,
and u the control inputs. Parameter T denotes the orbit time.
Constraint (2c) enforces periodicity of the trajectories and
(2d) gathers the actuator and operational limitations of the
AWE system. The model F describes the wing in minimal
coordinates as a point mass model with 6 DOF without any
tether dynamics. Further, it contains an aerodynamic model,
i.e. aerodynamic forces and moments acting on the wing
depending on the current position and wind conditions. (2b)
- (2d) depend on the considered system and the level of
accuracy. A detailed description of the model used in this
paper can be found in [10, 12].

The cost function Φ is given by the sum of the average
power P (x, p, T ) during one orbit and a small quadratic
regularisation term `Reg(u) on the control inputs u [10], i.e.:

Φ(x, z, u, p, T ) = − 1

T

∫ T

0

P (x, p, T ) + `Reg(u) dt. (3)

In practice, it can be noted that the regularisation term
in the performance Φ is negligibly small, hence the per-
formance is comparable with the generated average power
of the AWE system. We need to underline here that the
optimal trajectory for an individual AWE system disregards
the problem of respecting an assigned phase and freely
optimizes the orbit time T for the given wind conditions
p, resulting in the performance:

Φ?
free(p) = min

T
Φ?(p, T ) ≤ Φ?(p, T ). (4)

The difference Φ?(p, T ) − Φ?
free(p) ≥ 0 is then the perfor-

mance loss incurred by assigning the orbit time T of the
AWE system independently of the wind condition.

B. Wind parameter distribution and expected performance

A possible approach to investigate the effect of stochastic
wind changes in the AWE farm is to extensively sample the
distribution of the wind parameters, solving the OCP (2)
for each sample. In this paper, we propose to use a more
efficient approach based on the parametric sensitivity of the
NLP underlying OCP (2). We detail this approach next.

The expected change in performance Φ? under the normal
distributed wind parameter variation ∆p and a change in
orbit time T is given by E∆p [∆Φ?] where

∆Φ? = Φ?
(
p+ ∆p, T + ∆T

)
− Φ?

(
p, T

)
(5)

and T = arg minT Φ?(p, T ), the optimal orbit time under
the conditions p̄. In the following, we use the second-order
Taylor expansion:

∆Φ? = ∇pΦ?>∆p+ 1
2∆p>∇2

pΦ?∆p+ 1
2∆T>∇2

T Φ?∆T

+∆p>∇2
pT Φ?∆T +O

(
‖∆p,∆T‖3

)
, (6)

where all terms are evaluated at p, T . Using L as the
Lagrange function of OCP (2), we observe that ∇T Φ? =
∇TL? = 0 since T is optimum for Φ?

(
p, T

)
[13]. The

impact of a change in the orbit time ∆T on Φ? is therefore of
second order. The terms of order higher than 2 are neglected
so that the expected power is approximated as:

E∆p [∆Φ?] ≈ E∆p

[
∇pΦ?>∆p +

1

2
∆p>∇2

pΦ?∆p

+
1

2
∆T>∇2

T Φ?∆T + ∆p>∇2
pT Φ?∆T

]
.

(7)

C. Sensitivity computation

For some given wind conditions p, the sensitivities read
as:

∇2
pΦ?(p, T ) =

[
∇2

pL+∇2
psL

∂s?

∂p

]
, (8a)

∇2
pT Φ?(p, T ) =

[
∇2

pTL+∇2
psL

∂s?

∂T

]
, (8b)

∇2
T Φ?(p, T ) =

[
∇2

TL+∇2
TsL

∂s?

∂T

]
, (8c)

where variable s gathers the primal-dual variables of the
problem and all terms are evaluated at p, T . If LICQ and
SOSC hold at the solution of OCP (2), KKT conditions are
satisfied and Φ?(p, T ) and s?(p, T ) are differentiable in a
neighbourhood of p, T [14].

The sensitivities of the parametric primal-dual solution
s?(p, T ) are given by:

∂s?

∂p
= −∂R(s, p, T )

∂s

−1

· ∂R(s, p, T )

∂p

∣∣∣∣∣
s?,p,T

,

∂s?

∂T
= −∂R(s, p, T )

∂s

−1

· ∂R(s, p, T )

∂T

∣∣∣∣∣
s?,p,T

,



where R(s, p, T ) are the primal-dual KKT conditions of
OCP (2) [13].

D. Fixed and free orbit times

A performance loss is incurred by assigning the AWE
system’s orbit times to T , i.e. the optimal orbit time for the
farm average wind condition p. In order to assess this loss
we first observe that, with a fixed orbit time, the variation
of performance due to different wind conditions reduces to:

∆Φ?
fixed = ∆Φ?(p+ ∆p, T ) (9)

= ∇pΦ?>∆p+
1

2
∆p>∇2

pΦ?∆p+O
(
‖∆p‖3

)
such that:

E∆p [∆Φ?
fixed] ≈ Tr

[
∇2

pΦ?Σp

]
(10)

where Tr denotes the trace of a matrix and Σp the diagonal
covariance matrix, as ∆w0 and ∆z0 are considered as
uncorrelated.

In the free orbit time case the orbit time is optimized
with respect to the wind condition variation ∆p and the
performance variation reads as:

∆Φ?
free = min

∆T
∆Φ?(p+ ∆p, T + ∆T ) ≈ ∇pΦ?>∆p

+ min
∆T

1

2

[
∆p

∆T

]> [
∇2

pΦ? ∇2
pT Φ?

∇2
TpΦ? ∇2

T Φ?

][
∆p

∆T

]
. (11)

The Schur complement of the last term yields the explicit
solution:

∆Φ?
free ≈∇pΦ?>∆p (12)

+
1

2
∆p>

(
∇2

pΦ? −∇2
pT Φ?

(
∇2

T Φ?
)−1∇2

TpΦ?
)

∆p.

The expected performance then reads as:

E∆p [∆Φ?
free] ≈ Tr

[
∇2

pΦ?Σp

]
(13)

− Tr
[
∇2

pT Φ?
(
∇2

T Φ?
)−1∇2

TpΦ?Σp

]
We then observe that the expected performance loss incurred
from assigning a fixed orbit time ∆T = 0 instead of using
an optimal one as in (12) can be quantified by

E∆p [∆Φ?
fixed]− E∆p [∆Φ?

free] ≈

Tr
[
∇2

pT Φ?
(
∇2

T Φ?
)−1∇2

TpΦ?Σp

]
≥ 0. (14)

In the following section, (14) will be used to quantify the
performance loss resulting from using phase control in an
AWE farm.

III. NUMERICAL RESULTS

The investigation on the performance loss is made for
pumping and drag mode systems both at small and large
scale. The performance losses are quantified at an average
roughness of z0 = 0.15 m and for the two different average
wind farm speeds of w0 = 6 m/s and w0 = 8 m/s. The
performance losses are computed for a standard deviation of
the base wind speed σ∆w0

∈ [0, 1.5] m/s and for a standard
deviation of the roughness σ∆z0 ∈ [0, 0.06] m.

small-scale big-scale
pump drag pump drag

Area [m2] 15 20 50 55
wing mass [kg] 100 300 200 1000
tether diameter [m] 0.009 0.013 0.015 0.025
operation altitude [m] 35-160 40-180 60-230 40-200
tether length [m] 240-290 300 420 - 480 300

TABLE I: System specifications for small and big wings

The specifications of the AWE systems considered here
are given in Table I. The slightly larger wing area of the drag
mode system compensates for the higher component masses,
due to the on-board generation. The operation height and the
tether length are optimisation results. The wing parameters
in Table I are not representing a specific wing, but are chosen
as reasonable values.

OCP (2) is discretised using the direct collocation method
[13]. The time horizon is split into 40 control intervals,
on each of which the state trajectories are represented
using a Radau scheme of degree 3. The resulting NLP
is solved using Ipopt [15]. The NLP resulting from the
discretization of (2) is highly non-convex and very difficult
to solve. The problem has been tackled using the approach
proposed in [10, 16]. The sensitivity computation detailed
in Section II-C uses for the primal-dual KKT conditions
R the relaxed KKT conditions deployed in interior-point
methods, matching the barrier parameter used by Ipopt.

The optimal trajectory for a pumping mode system at a
wind speed of w0 = 6m/s in x-direction and z0 = 0.15 m
is shown in the top row in Fig. 3 with a top view on the left
and a side view on the right. The number of reel-out cycles
have been chosen to three in this analysis. The average
power output for this case is 56.74 kW with an optimal
orbit time T = 20.14 s. The resulting power profile has
been already shown in Fig. 1b. The optimal trajectory of a
drag mode system is roughly a circle operating at similar
heights as the pumping mode system, visible in the bottom
row of Fig. 3. The average output for this case is 48,4 kW
with an orbit time of T = 6.09 s and the resulting power
profile has been shown in Fig. 1a.

In the following, the performance losses of the drag and
pumping mode systems at a mean wind speed of w0 = 6 m/s
and w0 = 8 m/s are presented. The mean roughness factor
is kept as z0 = 0.15 m for all analysed cases. The difference
in performance between the controlled phase and free time
case is demonstrated by the relative difference as

Ψ =
|Φ?

free − Φ?
fixed|

Φ?
free

. (15)

In order to assess the accuracy of the second-order taylor
approximation of Φ?

free proposed here, an example of the dif-
ference between the optimal cost Φ?(p+∆p, T+∆T ) and its
second-order approximation is shown in Fig. 4 on the right.
On the left the difference of the approximated and the orbit
time T solved by the NLP is displayed. This comparison
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Fig. 3: Optimal trajectory of the small scale pumping mode
(top) and the drag mode (bottom) system at w0 = 6 m/s
and z0 = 0.15 m with the wind vector pointing in positive
x direction. Left: x-y view, right: x-z view
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Fig. 4: Comparison of the the approximation and NLP
solution for the large-scale drag mode system at w0 = 6 m/s.
Left: difference between the approximated orbit time (blue,
solid) and the actual (green, dashed). Right: Difference
between the second-order approximated Φ?

free (blue, solid)
and the actual performance Φ? (green, dashed).

shows that the proposed approximation is sensible for the
reasonably low standard deviations considered throughout
the analyses.

In Fig. 5 the relative expected performance differences
Ψ are displayed in percent with respect to various standard
deviations of ∆p. The left plot shows Ψ with respect to a
change in the base wind speeds w0 = 6 m/s and 8 m/s.
The expected performance loss due to a roughness change
∆z0 from the mean z0 = 0.15 m can be seen in the right
plot. The top row displays the small-scale and the bottom
row the large-scale system.
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Fig. 5: Expected performance difference Ψ under the vari-
ance ∆w0 (left) and under the variance ∆z0 (right). The
loss is shown for drag mode system at w0 = 6 m/s (black,
squares) and w0 = 8 m/s (red, dots) as well as for pumping
mode systems at w0 = 6 m/s (green, solid) and w0 = 8 m/s
(blue, triangles). Top: small-scale, bottom: large-scale system

For the small-scale system it can be observed that, for
drag mode a standard deviation in either the wind speed
or roughness factor has a larger effect than in the pumping
mode case. In the right plot the pumping mode system shows
almost the same relative power difference for w0 = 6 m/s
and w0 = 8 m/s. In both cases the relative performance
difference is at most 0.1%, so it can be stated that the
pumping mode systems are not really affected by a change
in roughness. On the other hand, the performance of drag
mode systems is clearly sensitive to a deviation in z0.
Also, the mean base wind in the farm has a clear impact
on the performance loss resulting from phase control. The
performance loss for roughness changes is more severe at
higher mean base winds within a wind farm. This can be
seen from the large relative difference in performance for
the drag mode system.

For large-scale systems the expected performance loss of
the large wings is approximately twice more sensitive to
wind variations than for small wings, visible in the bottom
row of Fig. 5. This could be due to their higher operation
altitude, which means greater winds and thus a higher loss
in performance. Otherwise, it shows similar results to the
small-scale systems. The drag mode systems show in both
plots higher performance losses than the pumping mode. As
for the small scale systems, the deviation in z0 has a much
smaller impact on the pumping mode than on the drag mode.
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Fig. 6: Φ?
free(p + ∆p, T + ∆T ) of the large scale systems

under the variance ∆w0 shown as solid line and Φ?
fixed(p+

∆p, T ) as dashed line for each case respectively. Left: Drag
(black, squares) and pumping mode system (green, solid) at
w0 = 6 m/s. Right: Drag (red, dots) and pumping mode
system (blue, triangles) at w0 = 8 m/s.

The expected performance Φ?
fixed and Φ?

free for the large
scale systems is displayed in Fig. 6. The greater performance
for a free orbit time is clearly visible, especially for the drag
mode system. Note, that as stated earlier, the performance
index is essentially yielding the power generation. Hence,
the performance represents the power generation in kW.

IV. CONCLUSION

The AWE industry is considering tackling the problem of
power variation of AWE systems via power averaging over
AWE farms. A technologically simple deployment of this
approach requires fixing the orbit times of the AWE systems
in the AWE farm, such that all systems in the farm follow
the same trajectory and orbit time. The selected orbit time
would be optimised with respect to the average wind speed in
the AWE farm. This, however, prevents the individual AWE
systems from exploiting their individual wind conditions to
the fullest, and therefore leads to a loss of performance.
This paper quantifies this loss of performance. It is computed
by comparing the expected performance of an AWE farm
operating using fixed orbit time vs. orbit times optimized
for the individual wind conditions. The study investigates
both small and large-scale systems for both the drag and
pumping mode, and considers variations of the wind speed
and wind shear in the AWE farm.

For all analysed cases, assigning a fixed orbit time to all
AWE systems in the wind farm, according to the average
wind conditions present in the farm, has a limited impact on
the performance. The performance loss does not exceed 4%
in all cases. The pumping mode is less sensitive to fixing
the orbit times than the drag mode, indeed, in the pumping
mode case, the performance loss does not exceed 1.4%.

According to these results, power averaging via a simple
phase shift and fixing of the orbit time appears a reasonable
approach to mitigate the power variations in AWE farms.
With respect to future requirements of power averaging in

AWE farms, this quantification of performance loss gives an
indication of the economic viability of the phase-shifting
control approach. We need to report here, however, that
these observations appear to be influenced by the wing
aerodynamics. While a reasonable choice of aerodynamic
model was made in this paper, the performance loss obtained
for a wider range of models ought to be investigated to
further explore this question.

Further work will investigate the effect the wind variations
at the level of the individual AWE systems with fixed orbit
times will have on the overall AWE farm power.
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