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Summary

Airborne wind energy (AWE) refers to a novel technology capable of harvest-
ing energy from wind by flying crosswind patterns with tethered autonomous
aircraft. Successful design of flight controllers for AWE systems relies on the
availability of accurate mathematical models. Due to an expected nonconven-
tional structure of the airborne component, the system identification procedure
must be ultimately addressed via an intensive flight test campaign to gain addi-
tional insight about the aerodynamic properties. In this paper, the longitudinal
dynamics of a rigid-wing, high lift, autonomous aircraft for AWE are iden-
tified from experimental data obtained within flight tests. The aerodynamic
characteristics are estimated via an efficient time-domain multiple experiments
model-based parameter estimation algorithm.
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1 INTRODUCTION

In the landscape of innovative renewable energy systems, airborne wind energy (AWE) is a novel emerging technology.
The AWE promises to harvest energy from wind with both lower installation costs and higher capacity factors compared
to conventional wind turbines, up to a level that could render AWE even more economically viable than fossil fuels.

Despite the fact that the idea of using tethered aircraft for wind power generation appeared for the first time in the
late 1970s,1 it is only in the last decade that academia and industry made substantial progress in turning the idea into a
practical implementation. The postponement of AWE technology is mainly due to the significant complexities in terms of
control,2 modeling,3,4 identification,5,6 materials,7 mechanics, and power electronics.8 Furthermore, these systems need to
fulfill high level of reliability while simultaneously operating close to optimality. Such requirements have brought many
developers to the use of rigid-wing autonomous aircraft as airborne component.9-13
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In the aerospace field, it is the current practice to retrieve the aircraft aerodynamic properties by a combination of wind
tunnel testing, computational fluid dynamics (CFD)14 analysis, and empirical methods such as DATCOM.15 For standard
aircraft configurations, such methods for obtaining aerodynamic characteristics are generally in agreement with those
obtained via flight tests. However, empirical methods, which can provide the quickest results, tend to be less accurate and
more difficult to apply to unconventional designs. The CFD is much more accurate but requires a fine mesh to capture
the flow dynamics accurately, and as a consequence, it involves significant computational resources to obtain a complete
aerodynamic database. As far as it regards wind tunnel experiments, they generally provide the most accurate results with
a suitably-sized model that matches the Reynold's numbers of the real system. However, for unconventional systems,
such approach can also be expensive. In any case, an intensive flight test campaign must be set in order to gain additional
insight into the aerodynamic properties and to validate parameters on the full-scale system.

This work is entirely based on the second prototype high lift, rigid-wing autonomous aircraft designed by Ampyx Power
B.V.9 and shown in Figure 1.

Ampyx Power B.V. adopts the so-called lift mode strategy1,2,16,17 where the airplane delivers a high tension on the tether,
which is anchored to a ground-based generator. An artist's rendering of the two main phases of a lift mode airborne wind
energy system (AWES) is shown in Figure 2.

A successful flight test campaign, which aims to identify the aerodynamic parameters of the aircraft, depends on many
factors, such as selection of instrumentation, signal conditioning, flight test operations procedure, parameter estimation
algorithm, and signal input design. In the work of Licitra et al,5 aerodynamic properties were estimated via flight tests
with conventional maneuvers for the pitch rate dynamics, only. In another work of Licitra et al,18 optimal maneuvers
were computed for the case study by solving a time-domain model-based optimum experimental design (OED) problem,
which aims to obtain more accurate parameter estimates while enforcing safety constraints. The optimized inputs were
compared with respect to conventional maneuvers widely used in the aerospace field and successfully tested within real
experiments.19 In this paper, estimation of the aerodynamic characteristics is carried out via an efficient multiple experi-
ment, ie, multiple-experiment model-based parameter estimation (MBPE) algorithm, for dynamic systems based on direct
methods using both conventional and optimized experiments. Data fitting is applied throughout the aircraft longitudinal
dynamics using a nonlinear model structure. The presented work will be used as a guideline for the system identification
of the next prototype designed by Ampyx Power B.V.9 and shown in Figure 3.

This paper is organized as follows. In Section 2, the mathematical model of a rigid-wing airborne component of a generic
AWES is introduced. Subsequently, a suitable model structure is selected for the estimation of aerodynamic properties
augmented with model assumptions as well as neglected dynamics. Section 3 focuses on the design and evaluation of
input signals. A preliminary estimation performance analysis is carried out using the Fisher information matrix and an
overview of both flight test procedures and decoupling of dynamics are provided. In Section 4, the experimental data
obtained from conventional and optimized flight test campaigns are presented. Section 5 formulates the MBPE algorithm,

FIGURE 1 The second prototype high lift, rigid-wing autonomous aircraft designed by Ampyx Power B.V. [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 Working principles of a lift mode AWES with a production and consumption phase. A lift mode AWES produces power by
performing periodical variation of both length and tether tension. Power generation occurs during the so-called reel-out phase, where the
tether tension is used to rotate a drum, driving an electric generator located on the ground. A reel-in phase is required due to finite tether
length. By changing the flight pattern in such a way that less lifting force is produced, the tether can be wound up with a significant lower
energy investment than what was gained in the power production phase [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 The third prototype high lift, rigid-wing autonomous aircraft designed by Ampyx Power B.V. [Colour figure can be viewed at
wileyonlinelibrary.com]

whereas in Section 6.1, data fitting is performed on the obtained experimental data. Finally, in Section 6.2, both estimates
and model validation are assessed and conclusions are provided in Section 7.

2 MODELING OF A RIGID-WING AWES

In this section, a mathematical formulation of an AWES is introduced. Subsequently, a nonlinear model structure is
selected for the purpose of system identification, underlying model assumptions, and neglected dynamics.

2.1 Modeling of AWES in natural coordinates
A rigid-wing AWES can be efficiently modeled as a set of DAEs described by nonminimal coordinates by means of
Lagrangian mechanics. The equations of motion for a tethered airborne component are given as3

ṗn = Rnb · vb (1a)

m · v̇b = fb
c + fb

p + fb
a + fb

g − m (𝛚b × vb) (1b)

Ṙnb = Rnb ·𝛀 (1c)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


4 LICITRA ET AL.

J · �̇�b = mb
c + mb

p + mb
a − (𝛚b × J · 𝛚b), (1d)

where vb = [u, v,w]⊤ and 𝛚b = [p, q, r]⊤ are the translational and rotational speed vector defined in body-fixed frame
(denoted with the superscript b), m is the mass, and J is the inertia dyadic of the aircraft. In (1a), the rate of change in
position ṗn is defined in north-east-down (NED) frame and it is obtained by means of the direct cosine matrix (DCM)
from body to NED frame Rnb ∈ ℝ3×3, whereas (1c) is the time evolution of the DCM with 𝛀 ∈ ℝ3×3 being the skew
symmetric matrix of 𝛚b. The aircraft is subject to forces fb

{c,p,g} and moments mb
{c,p,g} coming from the cable, propellers

and gravity, whereas fb
a = [X,Y,Z]⊤ and mb

a = [L,M,N]⊤ denote the aerodynamic forces and moments, respectively. The
mathematical formulation in (1) is extensively used for pattern generation using an optimal control approach.20,21

In order to identify the aerodynamic forces fb
a and moments mb

a , one has to either discard or have good models of the
other contributions. For this application, it is convenient to perform untethered flight tests to both simplify the overall
system modeling and avoid disturbances caused by tether vibrations. Furthermore, the propulsion system introduces
additional noise for each angular rate and acceleration channel provided by the rotation of the blades.

Hence, a flight test campaign, which aims toward the identification of aerodynamic properties, needs to be performed
without tether such that the cable does not interfere with the overall aircraft dynamics,5 and additionally, propellers
must be switched off whenever an excitation signal occurs in order to decouple the uncertainty in thrust effects on the
aerodynamic parameter estimation, simplifying (1) to

m · v̇b = fb
a + fb

g − m (𝛚b × vb) (2a)

Ṙnb = Rnb ·𝛀 (2b)

J · �̇�b = mb
a − (𝛚b × J · 𝛚b). (2c)

Note that Equation (1a) is discarded since it does not provide any meaningful information for system identification
purposes.

Finally, as far as it regards the cable dynamics, a comprehensive study can be found in the works of Williams et al,22,23

whereas the propeller forces and moments are normally obtained via extensive test bench.

2.2 Model selection
The case study considered within this work is a high lift, rigid-wing autonomous aircraft used as airborne component of
a lift mode AWES designed by Ampyx Power B.V.9 Details on the system can be found in the works of Ruiterkamp and
Sieberling,2 Licitra et al,19 and Diehl et al,24 whereas Table A1 collects the main physical properties.

For system identification purposes, it is more convenient to have the velocity Equation (2a) in terms of wind-axes vari-
ables: airspeed VT and aerodynamic angles 𝛽 and 𝛼, which are the angle of side slip and attack, respectively. Furthermore,
the aircraft attitude can be described via the Euler angles kinematics, where 𝜙, 𝜃, 𝜓 denote the roll, pitch, and yaw angle.
The proposed model structure is therefore given by25

V̇T = Y sin 𝛽 + X cos 𝛼 cos 𝛽 + Z cos 𝛽 sin 𝛼

m
+ GVT , (3a)

�̇� = Y cos 𝛽 − X cos 𝛼 sin 𝛽 − Z sin 𝛼 sin 𝛽

mVT
+

G𝛽

VT
− r cos 𝛼 + p sin 𝛼, (3b)

�̇� = Z cos 𝛼 − X sin 𝛼

mVT cos 𝛽
+ G𝛼

VT cos 𝛽
+

q cos 𝛽 − (p cos 𝛼 + r sin 𝛼) sin 𝛽

cos 𝛽
, (3c)

�̇� = p + r cos𝜙 tan 𝜃 + q sin𝜙 tan 𝜃, (3d)

�̇� = q cos𝜙 − r sin𝜙, (3e)

�̇� =
q sin𝜙 + r cos𝜙

cos 𝜃
, (3f)

ṗ = Jxz

Jx
ṙ − qr

(
Jz − Jy

)
Jx

+ qp Jxz

Jx
+ L

Jx
, (3g)

q̇ = −pr Jx − Jz

Jy
− (p2 − r2) Jxz

Jy
+ M

Jy
, (3h)

ṙ = Jxz

Jz
ṗ − pq

Jy − Jx

Jz
− qr Jxz

Jz
+ N

Jz
, (3i)
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FIGURE 4 Definition of axes, Euler angles, aerodynamic states, forces, and moments on a rigid-wing aircraft [Colour figure can be viewed
at wileyonlinelibrary.com]

where GVT , G𝛽 , G𝛼 are the gravity components expressed in wind frame and equal to

GVT = gD (sin 𝛽 sin𝜙 sin 𝜃 − cos 𝛼 cos 𝛽 sin 𝜃 + sin 𝛼 cos 𝛽 cos𝜙 cos 𝜃) , (4a)

G𝛽 = gD (cos 𝛼 sin 𝛽 sin 𝜃 + cos 𝛽 sin𝜙 cos 𝜃 − sin 𝛼 sin 𝛽 cos𝜙 cos 𝜃) , (4b)

G𝛼 = gD (sin 𝛼 sin 𝜃 + cos 𝛼 cos𝜙 cos 𝜃) , (4c)

with gD ≈ 9.81m∕s2 the gravitational acceleration. The nomenclature introduced previously is summarized in Figure 4.
The mathematical model (3) implicitly presumes that the vehicle is a rigid body with a plane of symmetry such that the

moments of inertia Jxy, Jxz are zero, whereas the Earth is assumed flat and nonrotating with a constant gravity field.26

Note that the model equations in (3) are also widely used for linearization purposes, dynamics analysis, and control
system design.25 Within this work, the aerodynamic forces (X,Y,Z) and moments (L,M,N) are normalized with respect
to the dynamic pressure q̄ = 1

2
𝜌V 2

T with 𝜌 ≈ 1.225 kg∕m3 being the free-stream mass density, and a characteristic area for
the aircraft body

X = q̄SCX Y = q̄SCY Z = q̄SCZ (5a)

L = q̄SbCl M = q̄Sc̄Cm N = q̄SbCn. (5b)

In (5), S, b, and c̄ are reference wing area, wing span, and mean aerodynamic chord, respectively, whereas CX, CY, and CZ
denote the forces, and Cl, Cm, and Cn are the moment coefficients. For conventional aircraft, the aerodynamic coefficients
are usually broken down into a sum of terms as follows:

CX = CXα𝛼 + CXq q̂ + CXδe
𝛿e + CX0 , (6a)

CY = CYβ𝛽 + CYp p̂ + CYr r̂ + CYδa
𝛿a + CY𝛿r

𝛿r, (6b)

CZ = CZ𝛼
𝛼 + CZq q̂ + CZδe

𝛿e + CZ0 , (6c)

Cl = Clβ𝛽 + Clp p̂ + Clr r̂ + Clδa
𝛿a + Clδr

𝛿r, (6d)

Cm = Cmα𝛼 + Cmq q̂ + Cmδe
𝛿e + Cm0 , (6e)

Cn = Cnβ𝛽 + Cnp p̂ + Cnr r̂ + Cnδa
𝛿a + Cnδr

𝛿r, (6f)

which depend on the normalized body rates p̂ = b p
2VT

, 𝑞 = c̄ q
2VT

, r̂ = b r
2VT

, angle of attack 𝛼, side slip 𝛽, and the control surface

http://wileyonlinelibrary.com


6 LICITRA ET AL.

deflections, which in this case are aileron 𝛿a, elevator 𝛿e, and rudder 𝛿r. The coefficients Ci𝑗 with i = {X,Y,Z, l,m,n} and
j = {𝛼, 𝛽, p, q, r, 𝛿a, 𝛿e, 𝛿r, 0} are the dimensionless aerodynamic derivatives that need to be identified.

2.3 Model assumptions and neglected dynamics
In flight dynamics, different methods of aerodynamic derivatives modeling exist. In many practical cases, the aerodynamic
properties are approximated by linear terms in their Taylor series expansion as in (6). On the one hand, such approxima-
tions yield sufficient accuracy for attached flows.27 On the other hand, this representation cannot be used in the region of
𝛼 where separated and vortex flow occurs.28

In this work, since the aircraft dynamics and its aerodynamic characteristics are described by the Equations (3), (4), (5),
and (6), one has to implicitly account for the model mismatches summarized as follows.

• The aerodynamic model (5), (6) neglects the influence of parameter variation through time.26 One can account for such
a model mismatch either by introducing a first-order differential equation involving the angle of attack rate �̇�28 or by
designing flight trajectories customized for energy production that allow the aircraft to perform mild maneuvers.20,21

• The mathematical model (3) relies on Euler's equations, which describe the motion of rigid bodies only, hence flexible
modes are implicitly neglected. However, a rigid-wing aircraft for AWE is usually characterized by a high-strength wing
with relatively high stiffness, as also expected for the next prototype shown in Figure 3. Eventual structural-coupling
issues caused by flexible modes are addressed during the control architecture design.25

• The aerodynamic derivatives in (6) are implicitly a function of 𝛼. Nevertheless, system identification performed via
flight tests are typically valid only for small neighborhood of 𝛼 with respect to its trim value 𝛼e given at a specific trim
airspeed VTe . Because aircraft deployed for AWES is intended to fly over a wide range of flight conditions, flight test
maneuvers and parameter identification need to be performed at multiple trim conditions.

• Estimates of aerodynamic derivatives are computed assuming that the aircraft inertias are known a priori. However,
fully accurate inertial estimates are difficult to obtain. Inertia estimates can be computed from computer-aided design
models or swing tests with varying degrees of accuracy.29,30 Errors in J{x,y,z,xz} will lead to errors in the absolute estimates
of the aerodynamic coefficients. Nevertheless, this will not undermine the predictive capability of the derived model,
as long as the estimated derivatives are kept consistent with the assumed value of J{x,y,z,xz} used to estimate them.5

In order to overcome the issues mentioned previously, it is a current practice to design a complex hierarchical control
system with high margin of robustness and to fly patterns with specific boundary conditions (for further details, see the
work of Ruiterkamp and Sieberling2).

3 DESIGN AND EVALUATION OF INPUT SIGNALS

In this section, an insight into the flight operation procedure and the rationale behind is provided. Subsequently, conven-
tional and optimized maneuvers are designed for parameter estimation purposes and assessed via the Cramer-Rao Lower
Bound (CRLB).

3.1 Flight test procedure for a high lift, autonomous aircraft
Typically, experiments are repeated on each axis to both obtain a rich data set and reduce the effect of sensor biases as well
as colored noise (atmospheric turbulence) on the estimation results.5 To prevent biases due to correlation between the
measurement noise and the inputs, it is best to perform open-loop experiments.31 For both physical and practical reasons,
system identification flight tests are performed at steady wing-level flight condition.32 An aircraft is in steady wing-level
flight condition when its body angular rates (p, q, r) and roll angle 𝜙 are equal to zero and it flies with constant airspeed
VTe .25 Fulfillment of this steady condition allows decoupling of the aircraft motion in longitudinal and lateral dynamics,
hence one can focus only on a subset of the entire aircraft dynamics, which is mainly excited from a given maneuver. For
instance, if a signal excitation is performed along the longitudinal axis via elevator deflection (with propellers switched
off), the remaining control surfaces (aileron and rudder deflection) are used to stabilize the lateral dynamics throughout
the entire experiment. As a consequence, parameter estimation will be performed only on the excited dynamics, which is
the longitudinal motion for this work. Note that, for the presented case study, the cross-product of inertia Jxz is only ≈ 2%
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FIGURE 5 Example of a flight test procedure for a high lift, autonomous aircraft (experimental data). After a coordinated turn,25 the
aircraft performs a straight flight (𝜙 ≈ 0 deg) with trimmed airspeed VTe

≈ 20m∕s and corresponding trimmed angle of attack αe ≈ − 2 deg
held by elevator deflection angle δee

≈ 3.5 deg . The flight path angle 𝛾 is approximately zero prior to the gliding mode. Note that, for this case
study, the propellers provide a pitch moment contribution since they are located on top of the fuselage, hence above the aircraft center
gravity. Throughout the excitation of the longitudinal motion performed in gliding mode, the aircraft slightly descents as also shown by 𝛾 ,
although the angle of attack response remain within a neighborhood of αe. The data set is collected during the open-loop phase and despite a
significant excitation of the longitudinal dynamics, the lateral motion is barely perturbed thanks to both the steady wing-level flight condition
and the motion stabilization via aileron 𝛿a and rudder 𝛿r deflection. Subsequently, the propellers are switched on and the aircraft operates
fully in closed-loop to recover a steady regime, in this example a coordinated turn [Colour figure can be viewed at wileyonlinelibrary.com]

w.r.t. the smallest moment of inertia, ie, Jx, hence minimal cross-coupling effects are expected, as also shown in (3) if one
assumes Jxz = 0. Figure 5 depicts the flight test procedure described previously and adopted within this work.

3.2 Decoupling of dynamics and aircraft modes
For conventional aircraft parameter estimation experiments, a linear perturbation model structure is usually taken into
account.33 Therefore, the flight test inputs are perturbations with respect to the steady condition. Within this work, data
fitting is performed using the nonlinear formulation (3) relative to the longitudinal dynamics, though, linear represen-
tations are used for signal input design as well as assessment of the expected estimation performance. The longitudinal
dynamics are described via LTI state-space form by the states xlon =

[
VT 𝛼 𝜃 q

]⊤, which correspond to (3a), (3c), (3e),

http://wileyonlinelibrary.com
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and (3h). The forces X, Z, and the moment M are assumed to be linear functions of VT, 𝛼, q, and the elevator deflection
𝛿e, resulting in the following matrices:

Alon =

⎡⎢⎢⎢⎢⎣
XV X𝛼 −gD cos 𝜃e Xq

ZV
Z𝛼

VTe
−gD sin 𝜃e Zq

0 0 0 1
MV M𝛼 0 Mq

⎤⎥⎥⎥⎥⎦
Blon =

⎡⎢⎢⎢⎢⎣
Xδe
Zδe
VTe

0
Mδe

⎤⎥⎥⎥⎥⎦
, (7)

where the nonzero elements are known as dimensional aerodynamic derivatives, whereas 𝜃e is the steady-state pitch angle.
The dimensional derivatives can be converted into dimensionless derivatives as shown in (6) via the geometrical config-
uration of the aircraft (for details, see the works of Stevens et al25 and Mulder et al26). The longitudinal dynamics can be
further decoupled into the phugoid and short-period mode. The phugoid mode is normally rather slow, slightly damp-
ened, and dominates the response in VT and 𝜃, whereas the short-period mode is typically fast, moderately dampened,
and dominates the response in 𝛼 and q. For control applications, accurate knowledge of the phugoid mode is not crucial
due to the low frequency of oscillation, which is compensated via feedback control, whereas the short-period mode is
crucial for stability and performance characteristics.34

The lateral dynamics are described analogously by the states xlat =
[
𝛽 𝜙 p r

]⊤, which correspond to Equations 3b, (3d),
(3g), and (3i). Force Y and moments L and N are described by linear functions of 𝛽, p, r, and inputs ulat = [𝛿a 𝛿r]⊤. The
resulting matrices are given by

Alat =

⎡⎢⎢⎢⎢⎢⎣

Y𝛽

VTe
gD cos 𝜃e Yp Yr − VTe

0 0 1 tan 𝜃e

L′
𝛽

0 Lp
′ Lr

′

N′
𝛽

0 Np
′ Nr

′

⎤⎥⎥⎥⎥⎥⎦
Blat =

⎡⎢⎢⎢⎢⎢⎣

Yδa
VTe

Yδr
VTe

0 0
Lδa

′ Lδr
′

Nδa
′ Nδr

′

⎤⎥⎥⎥⎥⎥⎦
, (8)

and their derivatives are defined in the work of McRuer et al.35 Unlike the longitudinal dynamics, the lateral motion
cannot be decoupled into independent modes. They are governed by a slow spiral mode, a fast lightly damped Dutch roll
mode, and an even faster roll subsidence mode (for details, see the work of Stevens et al25).

3.3 Design of conventional maneuvers
A type of signal input for this application, which is widely used in the aerospace field due to its easy implementation
and good estimation performance, comes from an optimization procedure of a sequence of step functions developed by
Koehler and Wilhelm.36 The input signal has a bang-bang behavior with a duration 7ΔT with switching times at t = 3ΔT,
t = 5ΔT, and t = 6ΔT and amplitude A. For this reason, such an input signal is called a 3-2-1-1 maneuver.

In the work of Mulder et al,37 it was shown that the 3-2-1-1 maneuver provides the best estimation accuracy for both air-
craft longitudinal and lateral dynamics among Doublets, Mehra, Schulz, and DUT input signals. Thus, only Doublets and
3-2-1-1 input signals provide sufficient system excitation for identification of system responses with frequencies above
1 Hz, although the 3-2-1-1 maneuver embraces much higher frequencies compared to Doublets. Finally, 3-2-1-1 maneu-
vers can be chosen through both a qualitative consideration in the frequency domain38 and a trial-and-error approach in
order to ensure that the system response is within the flight envelope.

3.4 Design of optimized maneuvers
Another type of signal input implemented within this work is obtained by solving a time-domain model-based OED
problem that aims to obtain more accurate parameter estimates while enforcing safety constraints.18

The main idea of OED is to use, as an objective of an optimization problem, a function 𝚿(·) of the Fisher information
matrix F, which is given by

F =
N∑

i=1

[(
𝜕y(i)
𝜕p̃

)⊤

𝚺y
−1

(
𝜕y(i)
𝜕p̃

)]
, (9)

with y ∈ ℝny being the output states sampled in N measurements and a priori parameters p̃ ∈ ℝnp and 𝚺y ∈ ℝny×ny

being the measurements for noise covariance matrix. A general model-based OED problem, which considers input u(t),
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differential states x(t), time length T, and subject to a mathematical model expressed as an ODE can be formulated as

minimize
x(·),u(·)

𝚿
(
F
[
x(·),u(·), p̃

])
(10a)

subject to: ẋ(t) = f (x(t),u(t), p̃) , t ∈ [0,T] (10b)

x(0) = x0, (10c)

umin ≤ u(t) ≤ umax , t ∈ [0,T] (10d)

xmin ≤ x(t) ≤ xmax , t ∈ [0,T] . (10e)

For further details, see the works of Licitra et al19 and Ampyx Power B.V.39

3.5 Baseline model
Both 3-2-1-1 and OED-based maneuvers need to be designed using a baseline (a priori) model with reasonable accuracy
in order to both have a first insight about the estimation performance and ensure that the system response evolves within
the flight envelope.

Various methods can be applied to obtain a first approximation of the aerodynamic model with the corresponding a prior
parameters p̃. If the airframe is similar to an existing aircraft, its model can be scaled. For instance, the digital DATCOM15

is a purely empirical guide to estimate aerodynamic derivatives based on aircraft configuration and the experience of
engineers. If the airfoils and aircraft configurations are new, one can perform analysis via the lifting line method,40 CFD,14

wind-tunnel tests, or previous flight tests. Depending on the available resources, combinations of these methods can be
used. In this work, a priori models are retrieved from lifting line method.5

A steady wing-level flight condition is considered with trimmed airspeed VTe = 20m∕s. Subsequently, the system is
linearized and the longitudinal dynamics are taken into account as in (7) with dimensional a priori derivatives shown in
Table A2.

As mentioned in Section 3.1, the a priori models provide an insight into the general characteristics of the aircraft behav-
ior via modal analysis.25 In Table 1, the a priori aircraft modes relative to the longitudinal dynamics are provided in terms
of natural frequencies 𝜔n, damping ratios 𝛿, time constant(s) 𝜏, overshoots in percentage S%, and period of oscillations
PO, whereas Figure 6 shows the candidate maneuvers with the corresponding simulation model response.

The modal analysis suggests to design experiments with time duration longer than 12.067 seconds in order to provide
sufficient excitation in the frequency range where the expected phugoid mode should take place. Although, the optimized
experiments' length is set to 10 seconds to ensure that the full sequence is completed in the available flight test area, taking
into account variations in the wind conditions on the flight test day(s) (for further details, see the works of Licitra et al18,19).

Historically, aircraft system identification has been performed using a pilot to provide input sequences. In this work,
the input sequences are performed autonomously. The flight control computer monitors the aircraft response and aborts
the maneuver in case the predetermined flight envelope boundaries are violated.5,18,19

3.6 Preliminary analysis
One way to assess the estimation accuracy that a given maneuver can provide is by the CRLB, ie, the theoretical lower
limits for parameter standard errors 𝜎 using an efficient and asymptotically unbiased estimator, such as maximum
likelihood.41 A performance analysis of signal inputs computed via the CRLB isolates the merits of the input design from

TABLE 1 A priori longitudinal modes

Mode Short-period Phugoid Unit

𝜔n 3.939 0.521 rad/s
𝜏 0.254 1.920 s
𝛿 0.789 0.031 −
S% 1.768 90.831 %
PO 2.596 12.067 s



10 LICITRA ET AL.

0 5 10 15 20

-2

0

2

V
T
 [

m
/s

]

0 5 10 15 20
-5

0

5

 [
d

e
g

]

0 2 4 6 8 10
-5

0

5

0 5 10 15 20
-20

0

20

 [
d

e
g

]

0 2 4 6 8 10
-20

0

20

0 5 10 15 20

-20

0

20

q 
[d

e
g

/s
]

0 2 4 6 8 10

-20

0

20

0 5 10 15 20

time [s]

-5

0

5

e
 [

d
e

g
]

0 2 4 6 8 10

time [s]

-5

0

5

0 2 4 6 8 10

-2

0

2
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to the trim condition [Colour figure can be viewed at wileyonlinelibrary.com]

the merits of the parameter estimation algorithm used to extract the aerodynamic derivatives from the flight data.33 The
CRLB depends on the diagonal entries of the Fisher information matrix F (9), which is formally31

𝜎i ≥ CRLBi =
1√
Fii

. (11)

Experience has shown that a factor of 2 can be introduced in order to obtain an approximation of the parameter standard
error,42 resulting in

𝜎i ≈ 2 · CRLBi =
2√
Fii

. (12)

Finally, note that the inverse of the Fisher information matrix F−1 corresponds to the covariance matrix of the estimated
parameters 𝚺p ∈ ℝnp×np . Table 2 gathers the 2CRLB values in percentage for the system responses shown in Figure 6 and
uses the sensors' noise standard deviation 𝜎y collected in Table A3.

The results indicate that the dimensional aerodynamic derivatives relative to the phugoid mode, ie, Xq, X𝛿e , which
correspond to the dimensionless one CXq , CXδe

are subject to high uncertainty. High values of CRLB indicate that either the
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TABLE 2 Dimensional aerodynamic longitudinal derivatives with corresponding expected estimation
accuracy via 2CRLB

XV X𝜶 Xq X𝜹e
ZV Z𝜶∕V Te

Zq Z𝜹e
∕V Te

M𝜶 Mq M𝜹e

Value −0.06 8.63 −0.153 −0.17 −0.05 −4.22 0.90 −0.34 −7.67 −1.96 −17.94
2CRLB% 25.27 34.88 336.67 291.62 1.07 1.06 1.08 4.18 0.14 0.10 0.02

ith parameter is physically insignificant with respect to the measured aircraft response or there is a correlation between
parameters, ie, these parameters can vary together, making their individual values difficult to determine.31 In this case,
the contribution provided to the aircraft response by XV is quite negligible; additionally, a significant correlation occurs
between X𝛼 , Xq, and X𝛿e .

To overcome this issue, one might fix the parameters associated to the phugoid mode with their a priori values, although
errors in the form of a low-frequency model mismatch could arise in the identified model. Nevertheless, accurate knowl-
edge of the phugoid mode is not crucial due to its slow motion, which can be easily handled by a pilot or a control system.32

On the other hand, high estimation accuracy is required for the short-period mode, which is given by ZV, Z𝛼 , Zq, Z𝛿e ,

FIGURE 7 Three experimental data sets obtained through conventional maneuvers (VTe
= 20m∕s). Average wind speed ≈ 7 m/s [Colour

figure can be viewed at wileyonlinelibrary.com]
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M𝛼 , Mq, and M𝛿e since longitudinal stability and performance characteristics primarily depend on the accuracy of the
short-period mode.34

4 EXPERIMENTAL DATA

A total of six experimental data sets are collected within two independent flight test campaigns with trimmed airspeed
VTe = 20m∕s. Three experiments are performed with conventional maneuvers 3-2-1-1 shown in Figure 7 with an average
(estimated) wind speed ≈ 7m∕s, whereas the other three experiments are collected using the OED-based maneuvers and
shown in Figure 8 with average wind speed ≈ 2m∕s.
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FIGURE 9 Stabilization of lateral dynamics by 𝛿a and 𝛿r during excitation signal along the longitudinal dynamics via conventional
maneuvers (VTe

= 20m∕s). Average wind speed ≈ 7 m/s [Colour figure can be viewed at wileyonlinelibrary.com]

In Figure 8, one can observe the decoupling between the phugoid mode, which dominates the airspeed VT and pitch 𝜃

responses, and the fast changes on the angle of attack 𝛼 and pitch rate q coming from the short-period mode. Comparing
Figure 7 with Figure 8, it is possible to discern the turbulence effect on the angle of attack 𝛼 and pitch rate q response.
This is not surprising since turbulences increase consistently with the wind speed.

As mentioned in Section 3.1, during the excitation of the longitudinal dynamics, the lateral motion is stabilized by
aileron 𝛿a and rudder 𝛿r deflection. Figures 9 and 10 show the lateral dynamics relative to the conventional and opti-
mized experiments, respectively. In addition, in this case, it is clearly shown how the turbulence effect acts on the aircraft
dynamics.

http://wileyonlinelibrary.com
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FIGURE 10 Stabilization of lateral dynamics by 𝛿a and 𝛿r during excitation signal along the longitudinal dynamics via optimized
maneuvers (VTe

= 20m∕s). Average wind speed ≈ 2 m/s [Colour figure can be viewed at wileyonlinelibrary.com]

More precisely, in Figure 9, one can observe how the roll rate p and roll angle 𝜙 appear sensitive to the turbulence,
which involves a major control effort from the aileron deflection 𝛿a in order to both stabilize this axis and prevent flight
envelope violation.

5 FORMULATION OF MULTIPLE-EXPERIMENT MODEL-BASED
PARAMETER ESTIMATION

Whenever parameter estimation is intended for identification of aircraft dynamics, multiple experiments are usually
required to deal with the following issues.43

http://wileyonlinelibrary.com
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• Multiple experiments reduce the effects of sensor biases as well as atmospheric turbulence on estimation results.
• Individual maneuvers usually have good information content only for a subset of parameters, while multiple maneu-

vers combined can provide better information w.r.t the complete set of parameters.
• The flight test area and operating safety case restrict the flight paths that can be flown, limiting the available duration

of any particular maneuver.

A standard approach is to retrieve the estimated parameters via data fitting for each independent experiment and sub-
sequently weight them w.r.t. their inverse (estimated) parameter covariance matrix 𝚺p.44 However, such method might
lead to wrong results whenever computed values of 𝚺p are not reliable.5

Furthermore, as shown in Equation (3), the angular acceleration measurements (ṗ, q̇, ṙ) as well as rate of changes in
the airspeed VT, Euler (𝜙, 𝜃, 𝜓), and aerodynamic angles (𝛼, 𝛽) need to be available in order to estimate aerodynamic
properties. Usually, these quantities are not measured, although they can be retrieved by numerical differentiation meth-
ods, which are rather noisy.43 Consequently, signal distortion may arise, degrading the overall estimation performance.
Within this scenario, multiple experiments MBPE algorithms appear a reasonable choice for estimation of aerodynamic
derivatives.

In this context, let us consider a mathematical model defined as a set of ODE

ẋ(t) = f(x(t),u(t),p, t) (13a)

y(t) = h(x(t),u(t),p, t) + 𝛜(t) (13b)
with differential states x ∈ ℝnx , output state y ∈ ℝny , noise-free control inputs u ∈ ℝnu , parameters p ∈ ℝnp , and time
t. The measurement values y are polluted by additive, zero-mean Gaussian noise 𝜂

(
0,𝚺y

)
with 𝚺y the covariance matrix

of measurements noise.
A multiple experiments MBPE problem can be first stated using an optimal control problem (OCP) perspective in

continuous time as follows5:

minimize
p(·)

Ne∑
i=1

Ti

∫
0

‖‖‖ŷi(t) − h
(
xi(t), ûi(t),p

)‖‖‖2

𝚺y
−1 dt (14a)

subject to ẋi(t) = f(xi(t), ûi(t),p, t) (14b)

t ∈
[
0,Ti] , i ∈ ℤNe

1 (14c)
with Ne being the number of experiments and ûi(t) and ŷi(t) being the input and output measurements, respectively, for
the ith experiment running for a duration Ti. Using direct methods,45 the optimization problem (14) can be transformed
into a finite dimensional nonlinear program (NLP), which can then be solved by numerical optimization methods. In this
work, a direct multiple shooting approach is chosen due to its stability w.r.t. the initial guess compared to a single shooting
strategy.46

In order to implement a multiple shooting algorithm, let us define an equidistant grid over the experiment consisting
of the collection of time points tk, where tk+1 − tk = Ti

Ni
m
∶= Ts, ∀i = 0, … ,Ne with Ni

m the number of measurements for
the ith data set, assuming implicitly that the measurements are collected with a fixed sample time Ts. Additionally, we
consider a piecewise constant control parametrization u(𝜏) = uk for 𝜏 ∈ [tk, tk + 1). A function 𝚷(·) over each shooting
interval is given, which represents a numerical approximation for the solution xk + 1 of the following initial value problem:

ẋ(𝜏) = f(x(𝜏),uk,p, 𝜏), 𝜏 ∈ [tk, tk+1]. (15)

Within this work, for 𝚷(.), a Runge-Kutta integrator of order 4 (RK4) is implemented. Therefore, the OCP (14) can be
translated into the NLP

minimize
p,X

Ne∑
i=1

Nm∑
k=0

‖‖‖ŷi
k − h

(
xi

k, û
i
k,p

)‖‖‖2

𝚺y
−1 (16a)

subject to xi
k+1 −𝚷

(
xi

k, û
i
k,p

)
= 0 (16b)

k = 0, 1, … ,Nm − 1, i ∈ ℤNe
1 , (16c)

where X ∈ ℝnX with nX =
∑Ne

i=1 nx · Nm
i and sorted as

X =
[

x1
0 , … , x1

Nm
1 , … , xNe

0 , … , xNe
Nm

e

]T
(17)
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in order to create a block diagonal structure on the NLP formulation and especially in the equality constraints (16b).
Notice that, in (17) the number of measurements Nm are assumed different for each ith experiment.

Finally, the NLP initialization can be chosen from, eg, previous estimates of p, whereas X can be initialized using the
measurements ŷ and/or estimates of the state x. For further details, see the works of Diehl45 and Bock et al.47

6 PARAMETER ESTIMATION RESULTS

In this section, the parameter estimation (PE) is carried out on the experimentally obtained data. The estimation results
are subsequently assessed via a time-domain model validation approach.

6.1 Data fitting
Within this work, the MBPE algorithm is implemented using CasADi48 in MATLAB environment. The system dynamics
(13a) taken into account are the nonlinear longitudinal motions expressed in (3a), (3c), (3e), (3h) with differential states

x(t) =
[
VT(t) 𝛼(t) 𝜃(t) q(t)

]⊤
, (18)

FIGURE 11 Jacobian and Hessian Sparsity of the nonlinear program [Colour figure can be viewed at wileyonlinelibrary.com]
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assuming steady wing-level flight condition, ie, 𝛽 = 𝜙 = p = r = 0. The unknown parameters are

p =
[
CX0 CXα CXq CXδe

CZ0 CZα CZq CZδe
Cm0 Cmα Cmq Cmδe

]
∈ ℝ12 (19)

and control input equal to
u(t) = 𝛿e(t), (20)

whereas the output states (13b) are simply given by

y(t) = x(t) + 𝛜(t). (21)

The continuous-time optimization problem (14) is subsequently discretized and formulated as an NLP using direct mul-
tiple shooting. The resulting NLP is solved via IPOPT49 with linear solver MA27.50 Finally, the optimization problem (16)
is initialized using the baseline model described in Section 3.5 for p and X with the real output measurements ŷi, i ∈ ℤNe

1 .
Data fitting is carried out simultaneously for all experimental data set shown in Section 4 with total number of

optimization variables
nopt = np + nX = 12 + 35564 = 35576. (22)

The CasADi discovers the structure and computes the full sparse Jacobian and Hessian with a minimum of algorithmic
differentiation sweeps (see Figure 11). The CasADi'S for-loop equivalents are used to efficiently build up the large number
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of shooting constraints (16b). Furthermore, since this application requires a large number of control intervals, the CasADi
map functionality was used to achieve a memory-lean computational graph. Using this proposed implementation, the
NLP is solved within 28 iterations of IPOPT. Figures 12, 13, 14 , and 15 show the data fitting for the airspeed VT, angle
of attack 𝛼, pitch angle 𝜃, and pitch rate q, respectively, corresponding to the experimental data shown in Section 4. Note
that the measurements are suitably low-pass filtered using zero-lag filtering in order to focus on the rigid-body modes
only. The control surface inputs are measured via feedback sensors on the aircraft, which allows the estimation to proceed
without requiring knowledge of the actuator dynamics. The control surface deflection measurements have no discernible
noise, although quantization errors equal to 0.25 deg are presented and compensated. Furthermore, a one frame transport
delay of the measurements is used.

The overall data fitting is satisfactory except for the airspeed VT, where biases arise mainly in the conventional experi-
ments. Finally, Table 3 collects the estimated dimensionless aerodynamic longitudinal derivatives for different trimmed
airspeeds VTe . In particular, the remaining derivatives are carried out using five experimental data sets for each flight
condition and using the same methodology described within this work, although the latter are not shown for the sake of
brevity.
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6.2 Model validation
Because a significant inaccuracy on some derivatives relative to the phugoid mode is expected (see Section 3.6) and biases
on the airspeed data fittings are observed in Section 6.1, the estimates CXq , CXδe

are set to their a priori values. As mentioned
in Section 3.6, in this way, low frequency errors might arise in the identified model, although standard feedback controls
can easily handle such model mismatch.32

Furthermore, it turns out that the estimated derivative CZq , ie, the force variation along the Z-axis, has no reasonable
physical meaning, and for this reason, its value is fixed to the a priori estimate, too. Moreover, uncertainties on CZq do not
significantly deteriorate the predictive capability of the derived model.26
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Table 4 collects the a priori p̃ and estimated p∗ dimensionless aerodynamic longitudinal derivatives augmented with the
set of parameters pv, which are used for model validation, whereas Table 5 shows the corresponding identified phugoid
and short-period mode.

In addition, in this case, a discrepancy is observed between the estimated phugoid period (Po ≈ 11 seconds) and the
observed one (Po ≈ 13 seconds) in the airspeed responses shown in Figure 16.

The accuracy of an identified model is ultimately assessed via its capability to predict time responses.32 For validation
purpose, the identified model is simulated using a further flight test experiment shown in Figure 17. One can observe
that the identified model provides a better fitting compared to the a priori one despite inaccuracies on the phugoid mode.
Figure 18 shows the corresponding residual distributions 𝜖 defined as

𝛜k = ŷk − h (xk, ûk,pv) , k = 1, … ,Nv (23)

http://wileyonlinelibrary.com


LICITRA ET AL. 21

TABLE 3 Dimensionless
aerodynamic longitudinal derivatives
estimates carried out for different
trimmed airspeed VTe

VTe
18 m/s 20 m/s 25 m/s

CX0
−0.060 0.007 −0.168

CX𝛼
−1.501 −0.705 −0.475

CXq
−30.202 −20.799 −4.852

CX𝛿e
−0.396 −0.952 0.804

CZ0
−0.478 −0.483 −0.494

CZ𝛼
−6.728 −5.575 −5.871

CZq
−49.209 −55.256 −37.787

CZ𝛿e
−1.668 −0.823 −1.145

Cm0
0.060 0.059 0.047

Cm𝛼
−0.737 −0.764 −0.786

Cmq
−18.504 −20.335 −15.911

Cm𝛿e
−0.966 −0.971 −0.865

TABLE 4 Collection of the a priori p̃
and estimated p∗ dimensionless
aerodynamic longitudinal derivatives.
pv is the set of parameters chosen for
model validation

p p̃ p∗ pv

CX0
−0.033 0.007 0.007

CX𝛼
0.409 −0.705 −0.705

CXq
−0.603 −20.799 −0.603

CX𝛿e
−0.011 −0.952 −0.011

CZ0
−0.528 −0.483 −0.483

CZ𝛼
−4.225 −5.575 −5.575

CZq
−7.500 −55.256 −7.500

CZ𝛿e
−0.310 −0.823 −0.823

Cm0
−0.031 0.059 0.059

Cm𝛼
−0.607 −0.764 −0.764

Cmq
−11.300 −20.335 −20.335

Cm𝛿e
−1.420 −0.971 −0.971

TABLE 5 Identified longitudinal modes

Mode Short-period Phugoid Unit

𝜔n 5.548 0.587 rad/s
𝜏 0.180 1.704 s
𝛿 0.843 0.036 −
S% 0.721 89.210 %
PO 2.108 10.712 s
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TABLE 6 Theil inequality coefficients

VT 𝜶 𝜽 q

TIC 0.04 0.20 0.21 0.15

with Nv being the number of samples related to the validation data set. Practically speaking, the residual is the part of the
data that the model is not able to reproduce; the aim is to achieve a residual resembling a white noise signal. However,
it is well known that the residuals will not be white noise if the real system has significant process noise (atmospheric
turbulence).5

Finally, estimation results are assessed via the so-called Theil inequality coefficient (TIC), which is defined by the
following relationship34:

TIC =

√
1

Nv
ΣNv

i=1(ŷi − h (xi, ûi,pv))2√
1

Nv
ΣNv

i=1ŷ2
i +

√
1

Nv
ΣNv

i=1h(xi, ûi,pv)2
. (24)

The TIC provides a basis of judgment regarding the degree of predictability of a mathematical (estimated) model via a
normalized metric between 0 and 1. A value of TIC = 0 denotes a perfect match, whereas TIC = 1 indicates the worst
case scenario, ie, the mathematical model is not able to explain any of the data. Values of TIC ≤ 0.25 correspond to
accurate prediction for rigid-wing aircraft.42,51 Table 6 summarizes the TIC values for this work.
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The results show that the angle of attack 𝛼, pitch angle 𝜃, and pitch rate q are captured with high accuracy as well as
the airspeed response VT despite the uncertainties mentioned previously.

7 CONCLUSIONS

In this paper, real flight test experiments and a subsequent time-domain MBPE have been carried out for a high lift,
rigid-wing autonomous aircraft deployed for an AWES. A suitable and comprehensive nonlinear mathematical model for
system identification purposes was introduced and the underlying model assumptions were discussed. Furthermore, an
overview of the flight test procedure for a high lift autonomous aircraft has been provided. The experimental data sets
were obtained for the longitudinal dynamics for the steady-state wing-level trim condition. In order to obtain the required
estimation accuracy, aerodynamic derivatives were estimated within one single optimization problem, which takes into
account all collected data carried out by both conventional 3-2-1-1 and optimized maneuvers. Finally, the identified model
was assessed by time-domain model validation, residual distribution analysis, and TIC.

Experimental results have shown that system identification via real flight tests is able to improve the predictive capa-
bility of low fidelity a priori models for a high lift, rigid-wing aircraft. However, baseline models are equally important to
deal with nonidentifiable dynamics as well as for designing maneuvers for system identification purposes.

Future work will aim toward the implementation of parameter estimation algorithms, which might further improve
robustness w.r.t. turbulence effects, eg, the Filter-Error method.52
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APPENDIX

TABLE A1 Physical properties of the high lift, rigid
wing, autonomous aircraft

Name Symbol Value Unit

Mass m 36.8 kg
Moment of inertia Jx 25 kg · m2

Moment of inertia Jy 32 kg · m2

Moment of inertia Jz 56 kg · m2

Cross moment of inertia Jxz 0.47 kg · m2

Reference wing area S 3 m2

Reference wing span b 5.5 m
Reference chord c̄ 0.55 m

TABLE A2 A priori longitudinal dimensional
aerodynamic derivatives (VTe

= 20m∕s)

X-axis Value Z-axis Value M-axis Value

XV −0.147 ZV −0.060 MV 0.0
X𝛼 7.920 Z𝛼∕VTe

−4.400 M𝛼 −6.180
Xq −0.163 Zq 0.896 Mq −1.767
Xδe

−0.232 Zδe
∕VTe

−0.283 M𝛿e
−10.668

TABLE A3 Sensors noise standard deviation 𝜎y

Sensor Variable 𝝈y Unit

Five hole pitot tube VT 1.0 m/s
Five hole pitot tube (𝛼, 𝛽) 0.5 deg
IMU (𝜙, 𝜃, 𝜓) 0.1 deg
IMU (p, q, r) 0.1 deg/s
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