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Abstract— Airborne Wind Energy (AWE) refers to systems
capable of harvesting energy from wind by flying crosswind
patterns with a tethered aircraft. Accurate models are crucial
for tuning and validation of flight controllers. Due to the
non-conventional structure of the airborne component, an
intensive flight test campaign must be set where maneuvers are
performed for parameter estimation purposes. In this paper,
we optimize maneuvers for the longitudinal dynamics of a
rigid wing AWE pumping system by solving a model-based
experimental design problem that aims to obtain more accurate
parameter estimates and reduce the flight test time. We consider
a trim reference condition of the aircraft and constraints are
enforced in order to prevent flight envelope violation. Finally,
the optimal solution is implemented in the Flight Control
Computer (FCC) of the prototype developed by Ampyx Power
B.V. and validated under realistic flight conditions.

I. INTRODUCTION

Airborne Wind Energy (AWE) is an innovative technology
emerging in the renewable energy field. The idea of using
tethered aircraft for wind power generation was initially
motivated by Loyd [1]. In the last decades, several systems
with high power-to-mass ratio and capacity factor have been
deployed in order to exploit the wind at high altitude with
low costs [2].

Among the different concepts in the landscape of AWE
[3][4], one promising case study is the so called AWE
pumping system. In this technology, the airborne component
can be either a soft wing (e.g. kite) or a rigid wing (aircraft)
and in both cases the wing exerts a high tension on the tether
which is connected to a ground-based generator. A rigid wing
AWE pumping system is being developed by Ampyx Power
B.V. [5]. Fig. 1 depicts the basic control strategy of the case
study while Fig. 2 shows the second generation prototype of
the airborne component which is referred to as a PowerPlane.

The rigid wing AWE pumping system requires accurate
models of the entire system, including the PowerPlane. Ex-
isting analysis tools such as Computational Fluid Dynamics
(CFD) [6] or Lifting-line method [7] are able to provide
initial estimates of the parameters, but in most cases the full
dynamic effects of the PowerPlane have to be determined via
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Fig. 1. In a AWE pumping system, a production phase follows a retraction
phase periodically. During the production phase, the aircraft exerts a high
tension on the tether which is used to rotate a drum that drives an electric
generator. In the retraction phase the tether is wound up by changing
the flight pattern so that significantly less energy needs to be invested in
comparison to what has been gained during the production phase.

an intensive flight test campaign in order to gain additional
insight about the aerodynamic properties.

A successful flight test campaign depends on many factors,
such as selection of instrumentation, signal conditioning,
flight test operations procedure, parameter estimation al-
gorithm and signal input design. In [8] the longitudinal
dynamics of the PowerPlane have been estimated from real
flight tests using a multi experiment Model-Based Parameter
Estimation (MBPE) algorithm.

In this paper, we focus on the optimization of signal
inputs that aim to maximize the information content of the
measurement data used for determining the unknown model
parameters. The paper is organized as follows. In Section
II, the mathematical model of the PowerPlane for parameter
estimation purposes is introduced and an overview of the
flight test operation procedure and safety requirements is
provided. Section III presents a formulation of the Optimum
Experimental Design (OED) problem based on the Cramer-

Fig. 2. The second generation PowerPlane developed by Ampyx Power
B.V. with mass = 36.8 kg, wing area = 3 m2, wing span = 5.5 m and
reference chord = 0.55 m.



Rao Lower Bound. The optimization problem is applied
along the longitudinal axis of the PowerPlane. In Section
IV, the performance of the optimized inputs is assessed for
different degrees of inaccuracy of the a priori model. Finally,
the optimized maneuvers are implemented in the Flight Con-
trol Computer (FCC) of the PowerPlane and validated using
a high fidelity model and realistic atmospheric conditions.

II. MATHEMATICAL MODEL
In this section, the mathematical model of the PowerPlane

is introduced, then a brief overview of the flight test proce-
dures and safety requirements are provided.

A. Model Development

A rigid wing AWE pumping system can be modeled both
via Differential Algebraic Equations (DAEs) [9][10][11] or
by Ordinary Differential Equations (ODEs) [12]. For OED
and Parameter Estimation (PE) purposes, let us consider the
Flat-Earth, Body-Frame 6 Degree of Freedom equations of
the PowerPlane

m · ~̇vb = ~Fc + ~Fp + ~Fa + ~Fg−m(~ωb×~vb) (1a)

J · ~̇ωb = ~Mc + ~Mp + ~Ma− (~ωb× J · ~ωb) (1b)

~̇Φe = R · ~ωb (1c)

with (1a), (1b), (1c) the force, moment and kinematic equa-
tion of the aircraft with mass m and inertia J, respectively.
The vectors ~vb = [u,v,w]T and ~ωb = [p,q,r]T denote the
translational and rotational speed vectors while ~̇Φe contains
the rate of the Euler angles, i.e., of roll φ , pitch θ and yaw
ψ which depend on the matrix R that is equal to

R =

1 tanθ sinφ tanθ cosφ

0 cosφ −sinφ

0 sinφ

cosθ

cosφ

cosθ

 . (2)

The aircraft is subject to forces ~F∗ and moments ~M∗ coming
from the cable, propellers, gravity and aerodynamics pro-
perties. Note that the gravity force vector ~Fg in Body-Frame
is

~Fg = g

 −sinθ

cosθ sinφ

cosθ cosφ

 (3)

with g≈ 9.81[m/s2].
Although the case study does not assume any propellers
during power generation phase, they are present in the
studied PowerPlane design for assisting launch and landing
[13] as well as performing general purpose untethered flights.
Finally, the mathematical model (1) is augmented with the
so called aerodynamic states ,i.e., the airspeed VT , angle of
attack α and angle of side-slip β that for the no-wind case
are as follows [14]

V̇T =
uu̇+ v v̇+wẇ

VT
(4a)

α̇ =
uẇ−wu̇
u2 +w2 (4b)

β̇ =
v̇VT − vV̇T

VT
√

u2 +w2
. (4c)

B. Flight Test Procedures and Safety Requirements

A flight test campaign aims to identify the aerodynamic
properties of the aircraft, i.e., ~Fa and ~Ma. In this case, ~Fa and
~Ma are defined as sums of terms which depend on the aircraft
geometry, ~ωb, α , β , VT and control surfaces multiplied by
coefficients known as aerodynamic derivatives (for details,
see [8][15]).

Normally, it is rather difficult to have accurate models of
the propellers and cable, hence the flight tests should be
performed without cable such that ~Fc and ~Mc do not interfere
with the overall aircraft dynamics. Additionally, propellers
are switched off whenever an excitation signal occurs in
order to decouple the thrust effects, simplifying (1a-1b) in

m · ~̇vb = ~Fa + ~Fg−m(~ωb×~vb) (5a)

J · ~̇ωb = ~Ma− (~ωb× J · ~ωb). (5b)

Yet, system identification flight tests of piloted aircraft are
carried out at a given trimmed airspeed. The excitation signal
is performed by the pilot only along one axis in open-loop,
while the other dynamics are kept under control.
The PowerPlane is an autonomous aircraft, hence no action
of the pilot occurs during the flight test unless system failures
are detected. As a consequence, reliable simulators play an
important role for the design of maneuvers and minimization
of flight envelope violation. Nonetheless, it may happen
that during the real flight test the aircraft violates the flight
envelope e.g. due to significant inaccuracies of the a priori
models or unexpected gust that occurs during the open
loop-phase. For this reason, flight envelope limit detection
algorithms should be programmed in the FCC in order to
avoid damages or complete destruction of the vehicle. Fig. 3
shows an example of how the flight envelope limit detection
reacts right after the pitch angle θ violates its safety limit.

Fig. 3. Example of flight envelope limit detection. A badly designed
maneuver is performed along the longitudinal axis via elevator deflection.
The detection of flight envelope violation involves the stop of the open-loop
phase, with recovery of the previous trim condition.



III. OPTIMUM EXPERIMENTAL DESIGN
PROBLEM

In this section, an introduction of OED is given, then the
a priori models and relative constraints for the longitudinal
dynamics of the PowerPlane are provided.

A. Formulation of Optimum Experimental Design
The importance of choosing appropriate control inputs for

extraction of the aerodynamic derivatives from flight test data
was first noted by Gerlach [16]. Subsequent research focused
on design techniques for optimal control input signals that
aim to [17]
• maximize the information content of the flight test data;
• minimize the length of flight test maneuver necessary to

reach a specified level of accuracy of the aerodynamic
derivatives;

• reduce the number of expensive system identification
flight tests.

The main idea of OED is to use an operator norm Ψ(.) of the
Fisher information matrix M as a criterion of an optimization
problem. The inverse of the Fisher information matrix yields
a universal lower bound on parameter estimation accuracies
known as the Cramer-Rao Lower Bound, which allows to
optimize the input signal regardless the type of estimation
algorithm implemented [18].

In this context, let us consider a mathematical model
known a priori and defined as a set of ODEs

ẋ(t) = f(x(t),u(t),θp) , x(0) = x0, t ∈ [0,T ] (6a)
y(t) = h(x(t),u(t),θp) (6b)

ym(i) = y(i)+ ε(i), i = 1, ...,N (6c)

with differential states x∈Rnx , output states y∈Rny , control
inputs u ∈Rnu , a priori parameters θp ∈Rnθ . The output ym
is sampled in N measurements along a time horizon T and
it is polluted by additive, zero-mean Gaussian noise
ε ≈ η(0,Σy) with Σy ∈ Rny×ny the measurements noise co-
variance matrix. In agreement with the notation in (6), the
Fisher information matrix can be expressed as

M =
N

∑
i=1

[(
∂y(i)
∂θp

)T

Σ
−1
y

(
∂y(i)
∂θp

)]
. (7)

Therefore, a general model-based OED problem which con-
siders input and output constraints can be formulated in the
form

minimize
x(·),u(·)

Ψ(M [x(·),u(·),θp]) (8a)

subject to: ẋ(t) = f(x(t),u(t),θp) , t ∈ [0,T ] (8b)
x(0) = x0, (8c)
umin ≤ u(t)≤ umax, t ∈ [0,T ] (8d)
xmin ≤ x(t)≤ xmax. t ∈ [0,T ] (8e)

Different operator norms can be used in (8) with different
features [19][20][21]. In this paper, we use the so called A-
criterion [22] that consider as objective function

Ψ(M) =
1

nθ

· trace
(
M−1)= 1

nθ

· trace(Σθ ) (9)

with Σθ the parameter covariance matrix. In other words
the A-criterion minimizes the sums of the variances of the
estimated parameters relative to the a priori ones. In the
next section, the OED theory is applied to the longitudinal
dynamics of the PowerPlane.

B. A Priori Model

For aircraft PE experiments, typically a linear perturbation
model structure is assumed. As a consequence, the flight test
inputs are perturbations about a trim condition so that the
system response can be adequately modeled by such linear
structure [23]. For small side-slip angle β it is possible to
decouple the aircraft dynamics in longitudinal and lateral
dynamics [14]. Let us consider the longitudinal dynamics
only, hence the Linear Time-Invariant (LTI) system of the
PowerPlane will be

ẋlong = Axlong +Bulong (10)

with xlong =
[
VT α θ q

]T and ulong = δe where δe
denotes the elevator deflection while the state and input
matrix are

A =


PvT Pα g cos(γ) Pq
SvT Sα 0 Sq
0 0 0 1

MvT Mα 0 Mq

 , (11a)

B =
[
Pδe Sδe 0 Mδe

]T
. (11b)

The coefficients P∗,S∗,M∗ denote the dimensional aerody-
namic derivatives which shall be identified by the system
identification flight test. Note that the aerodynamic derivati-
ves vary for different trim conditions. The quantity g cos(γ)
is assumed to be known and comes from the linearization
point where γ refers to flight path angle. Finally, in order to
take into account the rate of elevator deflection, the system
is augmented as follows:

˙̃x =Aaug x̃+Baug ũ (12a)

Aaug =

[
A B

01×4 0

]
(12b)

Baug =
[
0 0 0 0 1

]T (12c)

with x̃ =
[
xlong ulong

]T and ũ = u̇long. The optimization
problem (8) will be subject to the a priori model (12a). The
a priori aerodynamic derivative θp can be provided by CFD,
lifting line, previous flight tests or a combination of those. In
this paper, we considered a trim condition for VT = 20 [m/s],
and flap setting δ f = 0 [deg] where g cos(γ) =−9.8066. The
measurement noise standard deviation used for Σy are shown
in Table I while the assumed ”true” dimensional aerodynamic
derivatives are in Table II.

C. Constraints

In general, hard constraint are not very relevant in input
signal design for flight tests unless a flight test maneuver
is planned at the edge of the permissible flight envelope
[17]. For this case study, the constraints have been chosen
as follows



• elevator deflection δe, angle of attack α as well as
the airspeed VT were constrained in order to keep the
aircraft within the region where the linear model is
applicable;

• rate of elevator deflection δ̇e was constrained according
to the maximum speed of the installed servos;

• pitch rate q and pitch angle θ should be bounded
with respect to the flight envelope limits since any
violation of the flight envelope would result in abortion
of the system identification test. In order to take into
account model mismatch and inaccuracies of the a priori
aerodynamic derivatives, these bounds were enforced
with a safety margin.

In Table III, input and state constraints are summarized.

D. Initial Input Signal

The optimization problem (8) needs to be initialized with
a suitable input signal. The initial maneuver chosen for this
application is widely used in the aerospace field due to
its easy implementation and good estimation performance
[17]. In turn, such input signal comes from an optimization
procedure of a sequence of step functions, developed by
Koehler [24]. The aim of Koehler was to find a signal with a
shape as simple as possible and power distributed uniformly
over a wide range of frequencies [25]. The input signal had a
bang-bang behavior with a duration 7∆T where the switching
times were at t = 3∆T , t = 5∆T , and t = 6∆T . For this reason,
such an input signal was called a 3-2-1-1 maneuver. Fig. 4
shows a 3-2-1-1 maneuver of amplitude A = 5[deg] subject
to limited rate deflection in agreement with the PowerPlane
servos.
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Fig. 4. Example of a 3-2-1-1 maneuver subject to limited speed.

E. Algorithm Implementation

The optimization problem (8) requires frequent evaluation
of the parameter covariance matrix Σθ , hence an efficient
evaluation of this matrix is crucial from a computational

point of view [26],[27]. In this paper, the optimized ma-
neuvers are obtained using the open-source Python module
CASIOPEIA [28] based on CasADi [29] with IPOPT as NLP
solver [30]. CASIOPEIA computes the covariance matrix
Σθ from the inverse of the KKT-matrix of the underlying
parameter estimation problem using a Schur Complement
approach which relies on the solution of a sparse linear
system and the inversion of a small-scale matrix with
dimension equal to the number of estimated parameters.
The method and implementation details are shown in [31].
The continuous-time optimization problem is discretized and
formulated as a nonlinear program automatically via direct
collocation [32] using Lagrange polynomials.

IV. ANALYSIS & RESULTS

In order to assess the performance of the optimized
maneuvers, three hypothetical cases are taken into account:

• a case during the preliminary phase of the flight test
campaign where aerodynamic derivatives come exclu-
sively from simulation, hence high inaccuracies might
be present;

• a case during an intermediate stage of the flight test
campaign where aerodynamic derivatives rely on both
simulation and previous flight tests, hence reasonable
estimates are expected;

• a case after an extensive flight test campaign where ae-
rodynamic derivatives are likely to have high accuracy.

We assume that the a priori parameters θp deviate in per-
centage w.r.t. the ”true” parameter θ0 by ∆θ% = 100% ,
∆θ% = 20% and ∆θ% = 5%, respectively. For each case, 3-2-
1-1 maneuvers were designed to both provide good Signal-
Noise-Ratio (SNR) and keep the system response within the
prescribed constraints in agreement with the a priori models.
Such design was carried out via qualitative considerations
in the frequency domain, too [17]. For comparability, the
maneuvers were injected into the ”true model” in order
to verify the impact of the 3-2-1-1 maneuvers based on
inaccurate models (see Fig. 5). In all cases, the duration of
the maneuvers was set to T = 10[s].

Afterwards, the a priori aerodynamic derivatives and
3-2-1-1 maneuvers were used to initialize the optimization
problem (8) subject to the model (12). Fig. 6 and Fig. 7 show
the optimized inputs and optimized responses, respectively.

One can observe that in all three cases, the optimized
maneuvers have a bang-bang behavior where the transition
values occur with a slope which corresponds to the speed of
the installed servos. However, the rate of elevator deflection
does not exploit its maximum allowable limit (see fourth
graph of Fig. 6). The angle of attack α , pitch angle θ

and pitch rate q approach to a sinusoidal response while
the airspeed VT increases in agreement with the prescribed
constraints. As for the 3-2-1-1 maneuvers, the optimized
maneuvers were performed considering no model mismatch.
The results show that even for the worst case (∆θ% = 100%)
there is no significant constraints violation.
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Fig. 5. Output response using 3-2-1-1 maneuvers. The a priori model
responses are in dash-dot line while the true model responses are in solid
line. The output responses blue line for the case ∆θ% = 100% , green line
for the case ∆θ% = 20% , red line for the case ∆θ% = 5%. Flight envelope
limits in black dash-dot line while the constraints are in black dot line.

A. Assessment of Estimation Performance

Estimation performance for the data obtained by both
3-2-1-1 maneuvers and optimized maneuvers were assessed
via a Maximum Likelihood approach [33] where 1-σ con-
fidence ellipsoids were computed [8] via an estimate of the
covariance matrix Σθ [34] using 1000 experiments. Due to
space limitation, only the 1-σ confidence ellipsoids for the
pair of estimates

(
Pδe ,Pq

)
,
(
Sδe ,Pα

)
, (Mq,Mα) are shown in

Fig. 8, 9. Note that, PvT ,Pα ,Pq,Pδe belong to the phugoid
mode [14] and their estimation with reasonable accuracy is
rather difficult via elevator deflection.

Table IV shows the deviation of the variance in percentage
between the initial and optimized maneuvers. A negative
value means a reduction of the variance, in other words
an improvement in terms of estimation accuracy and vice
versa for positive values. One can observe that the opti-
mized maneuvers provide a better estimation accuracy in
comparison to the 3-2-1-1 maneuvers. More reliable a priori
models facilitate higher information content of the optimized
experiment. However, for high parameter inaccuracies a loss
of estimation performance for the aerodynamic derivatives
relative to the airspeed dynamics has been shown.

B. Simulation with realistic atmospheric condition

Once the maneuvers performances have been validated, a
flight plan must be set. As mentioned before, the PowerPlane
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Fig. 6. Optimized maneuvers with respective rate of inputs for the case
∆θ% = 100% (blue line), ∆θ% = 20% (green line),∆θ% = 5% (red line). Dot
lines refer to constraints.

is an autonomous aircraft, hence it has to launch, perform the
system identification flight test and land safely without any
action from the pilot (in remote). The FCC of the case study
allows to define maneuvers as steps with tunable amplitude
and time length only. Therefore, the steps transition shown
in Fig. 6 were approximated as tight step functions. The
results obtained from the high fidelity simulator designed
by Ampyx Power B.V. show that the PowerPlane was able
to complete the system identification flight test without any
flight envelope violation, providing good excitation of the
longitudinal dynamics, see Fig. 10,12,11,13.

V. CONCLUSIONS

In this paper, a model-based optimum experimental design
has been applied to a rigid wing AWE pumping system. The
optimized maneuvers were obtained for a trim condition of
the aircraft longitudinal dynamics and implemented in the
PowerPlane Flight Computer Control. The optimization pro-
blem was initialized using a priori aerodynamic derivatives
for different (hypothetical) stages of a flight test campaign
and using the well known and widely used 3-2-1-1 maneu-
vers. The results have shown that with reasonable a priori
models, optimized maneuvers can improve the information
content of the experiment data significantly. However, it is
advisable to apply conventional signal inputs like the 3-2-
1-1 maneuver during the preliminary stage of the flight test
campaign.

VI. FUTURE WORKS

Future works will aim towards the validation of the
optimized maneuvers with real system identification flight
tests.
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TABLE I
SENSORS NOISE STANDARD DEVIATION σ

Variable σ Unit
vT 0.4 [m/s]
α 0.0175(0.1) [rad] (deg)
θ 0.0349(0.2) [rad] (deg)
q 0.0175(0.1) [rad/s] (deg/s)

TABLE II
TRUE DIMENSIONAL AERODYNAMIC DERIVATIVES

Parameters θ0
PvT -0.0688
Pα +6.2603
Pq -0.1606
Pδe -0.1819
SvT -0.0491
Sα -4.9292
Sq +0.8962
Sδe -0.3148
MvT -0.0068
Mα -7.6875
Mq -1.9631
Mδe -13.1733
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(
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In all cases, the optimized maneuvers provide better estimation accuracy
w.r.t. 3-2-1-1 maneuvers.



Fig. 10. Aircraft behavior during the system identification flight test.
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Fig. 11. Angle of attack α and angle of side slip β related to Fig. 10.
For small angle of side slip, the aircraft dynamic can be decoupled in
longitudinal and lateral dynamics.

TABLE III
INPUT AND STATE CONSTRAINTS

Constraints Values Unit
δemin , δemax −5,5 [deg]
δ̇emin , δ̇emax −3.25,3.25 [rad/s]
αmin , αmax −4,4 [deg]
Vmin , Vmax −3,3 [m/s]
qmin , qmax −36,36 [deg]
θmin , θmax −27,36 [deg/s]

TABLE IV
VARIANCE REDUCTION IN PERCENTAGE

∆σ2
% ∆θ%

derivatives 100% 20% 5%
PvT +5.85% -59.24% -61.22%
Pα +1.75% -59.33% -60.81%
Pq -2.21% -59.62% -62.50%
Pδe -56.0% -73.92% -76.94%
SvT -39.47% -63.98% -68.58%
Sα -41.13% -62.01% -62.84%
Sq -53.82% -69.96% -70.20%
Sδe -69.63% -69.48% -74.17%
MvT -49.13% -65.36% -74.14%
Mα -50.21% -61.52% -67.71%
Mq -66.0% -72.24% -75.81%
Mδe -78.29% -69.61% -77.59%
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Fig. 12. Control demands related to Fig. 10. The optimal maneuver (case
∆θ = 20%) was performed along the longitudinal axis by elevator deflection
while the lateral dynamics were stabilized by aileron and rudder deflection.
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Fig. 13. Roll p, pitch q and yaw r rate related to Fig. 10. The pitch rate
q is the only body rate excited due to the decoupling effect.
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