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Abstract: Multiple-kite Airborne Wind Energy Systems (MAWES) aim to decrease inter-
mittency and cost over conventional wind turbines, while generating more power than other
airborne wind energy systems. The purpose of this work is to estimate whether axial and angular
induction are relevant phenomena in the modelling of pumping-cycle MAWES with two or more
kites. Considering the modelling assumptions, axial induction is a relevant phenomenon and
leads to significant changes in design-point, especially with respect to kite mass and secondary
tether length. However, angular induction can be neglected in modelling for optimal design and
control problems.
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1. INTRODUCTION

Airborne Wind Energy Systems (AWES) aim to decrease
both the intermittency and cost of wind energy by flying
tethered aircraft, called kites, higher than conventional
wind turbines, in cross-wind manoeuvres designed to max-
imize the kite’s apparent velocity. Typically, AWES gen-
erate power either in lift-mode with pumping cycle trajec-
tories that wind and unwind a ground-station generator,
or in drag-mode with onboard power production. (Loyd,
1980)

For single-kite AWES, tether drag can be significant, as
the top of the tether perceives the same high apparent
velocities as the kite. This is unfortunate, as the total
available power for an AWES is inversely proportional
to the square of the system drag. A Multiple-kite AWES
(MAWES) (see Figure 1) reduces tether drag over a single-
kite AWES by splitting the main tether into two or more
secondary tethers, each holding an equivalent kite. As the
main tether does not travel cross-wind, the total tether
drag for a MAWES is less than for a single-kite AWES.

Like all wind energy systems, MAWES convert the flow
kinetic energy into electrical energy. The kinetic energy
decrease of an incompressible fluid occurs gradually, such
that the flow arrives at the kite location with a slower
velocity than the free-stream. This phenomenon, called
induction, decreases the available energy within the flow
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Fig. 1. A sketch of a two-kite (N = 2) MAWES

along the axial, angular, and radial coordinates of MAWES
kite rotation. For model parsimony in optimal design
and control of MAWES, it should be determined whether
induction can be safely neglected in MAWES models.

This is not a trivial question, given that induction has
widely different levels of influence in similar systems.
For single-kite drag-mode AWES, Vander Lind (2014)
reports that induction has no practical effect because
crosswind velocity dominates the kite’s apparent velocity.
As a result, current studies of MAWES (Houska and
Diehl, 2007; Zanon et al., 2013) typically neglect induction.
However, induction is well established to have a large
impact (Manwell et al., 2009) on horizontal axis wind
turbines. Further, Zanon et al. (2014) estimates that axial
induction can decrease available power in a two-kite drag-
mode MAWES by 39 percent.
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As far as the authors are aware, induction effects in
MAWES of more than two kites, especially considering
angular induction and lift-mode power generation, have
not yet been studied. Consequently, the purpose of this
work is to assess whether it is necessary to include axial
and angular induction in the modelling of a lift-mode
MAWES with two or more kites. Radial induction is
outside the scope of this analysis.

The approach chosen here is to maximize the power out-
put of a highly-idealized lift-mode MAWES, and consider
whether induction strongly changes the optimization re-
sult, in terms of performance and design. Induction ef-
fects can be modelled using the Blade-Element Momentum
method (BEM) (Manwell et al., 2009), to include either No
Induction (NI), only Axial Induction (AI) or Axial and
Angular induction (AA), by selectively requiring that the
net downwind force and torque equal the flow downwind
momentum change.

2. ASSUMPTIONS FOR A HIGHLY-IDEALIZED
MAWES PROBLEM

Under certain assumptions, the MAWES problem sim-
plifies significantly into a highly-idealized MAWES prob-
lem. First, for cross-wind flight at large angular veloci-
ties, gravitational forces may be negligible in the face of
kite centrifugal and aerodynamic forces. Second, the wind
shear may be negligible, if the secondary tethers are much
shorter than the main tether. By also neglecting atmo-
spheric turbulence, the free-stream wind field is rendered
approximately uniform. Further, when the gravitational
and drag force on the main tether are much smaller than
the total force acting on the system, the main tether might
be neglected entirely.

Under these assumptions, the MAWES problem be-
comes axisymmetric and rotationally-steady about the
free-stream wind direction. Then, an analysis of one
kite-and-secondary-tether describes the entire MAWES.
Rotational-steadiness requires that the forces from this
kite-and-tether be parallel to the secondary tether. How-
ever, as the tethers are modelled rigidly and the forces
acting on the kite-and-secondary tether are not applied at
the same location, the torque from the modelled forces may
be nonzero. To ensure that the net torque is still zero and
satisfies rotational-steadiness, it is assumed that there is
a balancing pure-moment acting at the tether connection
point.

The kite of the single kite-and-secondary-tether within
this static problem is approximated as a thin, symmetric,
and elliptical wing, with some mean aerodynamic chord
c, span b, and mass m. As it is assumed that there is a
vertical stabilizer to generate restoring yaw momentum,
the elliptical wing is oriented not to experience side-slip.
Additionally, the angle-of-attack (AoA) must be small
such that the flow remains attached. The secondary tether
is assumed to be straight - without sag or strain, and with
a uniform diameter φ and density ρT - and attached to the
kite’s center of gravity.

Then, a MAWES can be highly-idealized (see Figure 2)
as a N -symmetric system, using a symmetric coordinate
system with axial x̂, tangential ŷ, and radial ẑ basis

vectors. The kite is oriented with chord-wise ê1, span-wise
ê2, and up ê3 basis vectors.

The problem is non-dimensionalized for design-
point comparison and numerical conditioning. Non-
dimensionalization is indicated with a ”tilde” such that
the free-stream velocity vector U∞ = U∞x̂ can be

described as Ũ∞ = x̂.

x̂

ẑ
ŷ

ê3

ê1

ê2

N -symmetry

c̃ = 1

ÆR = b
c

λ = Ωz̃c
U∞

Ũ∞ = x̂

m̃ = m
ρairb2c

φ̃ = φ
c

(x̃, 0, z̃) = (xc , 0,
z
c )

Fig. 2. Parameters in a highly-idealized MAWES

The equivalent kite has its center of gravity at (x̃, 0, z̃) =
(x/c, 0, z/c) and is described by a normalized mean aero-
dynamic chord c̃ = 1, aspect ratio ÆR = b/c, and tether

diameter ratio φ̃ = φ/c. To prevent collisions, it is assumed
that z̃ must be greater than or equal to half of the aspect
ratio ÆR:

z̃ − 1
2ÆR ≥ 0. (1)

The mass of the kite is described by a mass-ratio m̃ =
m/(ρairb

2c) that increases with both the planform area
and the span, due to additional internal stiffening. The
angular velocity Ω sets the tip-speed-ratio λ = Ωz̃c/U∞;
the reel-out velocity fU∞x̂ sets the reel-out factor f .

3. THE BLADE-ELEMENT MOMENTUM METHOD

The BEM can be applied to the above idealized MAWES,
beginning with a definition of the axial a and angular a′

induction factors:

a= 1− ũw = 1− uw

U∞
, (2)

a′ =
ṽw

λ
=

1

λ

vw

U∞
=
ω

Ω
, (3)

where the flow velocity at the kite location is considered
to be uw = uwx̂ + vwŷ = U∞(ũwx̂ + ṽwŷ), and ω is the
angular induced velocity.

In BEM, thrust and torque expressions are implicit func-
tions of the two induction factors. The thrust can be
non-dimensionalized by the free-stream dynamic pressure
q∞ = 1

2ρairU
2
∞, and the kite planform area S = bc. The

torque is additionally non-dimensionalized by the mean
aerodynamic chord c:

T̃ =
T

q∞S
= N

F · x̂
q∞S

= N F̃ · x̂, (4)

Q̃=
Q

q∞Sc
= N

Q · (−x̂)

q∞Sc
= N Q̃ · (−x̂) , (5)
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where T is the thrust, F the total force on the individual
kite, Q the torque component along the axis of rotation for
flow counter-clockwise rotation when facing downstream,
and Q the total torque vector.

Consequently, the inclusion of induction into the BEM
aerodynamic model depends on the thrust and torque
expressions of both the blade-element- and momentum-
perspectives.

3.1 Blade-Element Thrust and Torque Expressions

In comparison to the standard blade-element perspective,
it may be reasonable to trade the complexity of spanwise
blade discretization with empirical tip-loss corrections,
for three-dimensional potential-flow aerodynamic coeffi-
cient approximations. This is because a MAWES kite-and-
secondary-tether likely has less spanwise apparent velocity
variation but more significant tip losses than a wind tur-
bine blade.

Consequently, the thrust and torque from the blade-
element perspective depend on summing all of the forces
and moments on the the kite-and-secondary-tether.

Kite Forces and Moments The kite’s contribution to
the force and moment balance considers lift, drag, and
centrifugal forces.

The aerodynamic kite forces depend on the apparent
velocity ũa, determined from the wind velocity at the kite
location ũw and the kite’s velocity ũk:

ũw = (1− a)x̂ + a′λŷ (6)

ũk = f x̂− λŷ (7)

ũa = ũw − ũk (8)

Without side-slip, the apparent velocity is in the ê1, ê3

plane. Then, introducing ξ, ζ ∈ R, the following holds:

ũa − (ξê1 + ζê3) = 0. (9)

The variables ξ and ζ yield a simple expression for the AoA
(α = arctan (ζ/ξ) ≈ ζ/ξ), which must remain between
αmin = −12o and αmax = 12o, for fully-attached flow
(Jacobs and Sherman, 1937). Then, the following holds:

ζ − ξαmin ≥ 0, and ξαmax − ζ ≥ 0. (10)

To ensure that the direct cosine matrix R = (ê1, ê2, ê3) is
a rotation matrix, it is required that:

P
(
RTR− I

)
= 0, (11)

where P : R3×3 → R6 is a linear projection operator that
selects the upper triangular elements and ensures that the
Jacobian of (11) is full rank.

From thin airfoil theory, with a streamlined aircraft’s
parasite drag (Von Mises, 1959) coefficient CD0

= 0.10,
the three-dimensional lift and drag coefficients read as:

CL =
2πα

1 + 2/ÆR
, and CD = CD0

+
C2
L

πÆR
. (12)

Then the non-dimensional kite centrifugal C̃, lift L̃ and

drag D̃ forces acting approximately on the center of gravity
can be determined:

C̃ =
mΩ2z

q∞S
= 2

m̃ÆRλ2

z̃
ẑ, (13)

L̃ =CL ||ũa||22
ũa × ê2

||ũa × ê2||2
, (14)

D̃ =CD ||ũa||2 ũa, (15)

for which the torque on the tether-connection point is:

Q̃k = (x̃x̂ + z̃ẑ)×
(
C̃ + L̃ + D̃

)
. (16)

Tether Forces and Moments The tether is assumed to
experience only drag and centrifugal forces.

Integration along the straight tether determines the

tether drag force D̃T . This integration approximates
the apparent velocity distribution as linear between a
velocity-free tether-connection point and the kite ũa,T =

ũaU∞ l/
(√
x̃2 + z̃2

)
. Drag is assumed only to act on the

length perpendicular to the apparent velocity, using a fac-
tor l⊥ = sin(arccos((x̃x̂ + z̃ẑ) · ũa/((

√
x̃2 + z̃2) ||ũa||2))),

with a drag coefficient CD,T = 1.0 (Von Mises, 1959).

D̃T =

∫ c√x̃2+z̃2

0
CD,T

(
1
2ρair ||ua,T ||2

)
(φl⊥dl)ua,T

q∞S

=
CD,T

3

||ũa||2 l⊥φ̃
√
x̃2 + z̃2

ÆR
ũa. (17)

Integration also gives the tether drag torque Q̃TD
:

Q̃TD
=

CD,Tφl⊥
∫ c√x̃2+z̃2

0

(
1
2ρair ||ua,T ||2

)
ldl

(x̃x̂+z̃ẑ)×ua,T(√
x̃2+z̃2

)
q∞Sc

=
CD,T

4

||ũa||2 l⊥φ̃
√
x̃2 + z̃2

ÆR
((x̃x̂ + z̃ẑ)× ũa) . (18)

Futher, using the nondimensional tether density ρ̃T =

ρT /ρair, the tether centrifugal force C̃T reads as:

C̃T =

∫ c√x̃2+z̃2

0

(
ρT

π
4φ

2dl
)

Ω2

(
lz̃ẑ√
x̃2+z̃2

)
q∞S

=
π

4
φ̃2ρ̃T

λ2

ÆR

√
x̃2 + z̃2

z̃
ẑ. (19)

Geometrically, the tether centrifugal torque points along
negative ŷ and has no component in the x̂ direction.

The kite and tether forces and moments can now be
combined to find the blade element thrust and torque
expressions.
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Net Thrust, Torque, and Power The previously defined
forces in (13), (14), (15), (17), and (19) as well as torques
(16) and (18) can be combined into resultant thrust and
torque expressions that will help determine the MAWES
induction. Further, the resultant thrust contributes to a
power expression that can act as a figure-of-merit for a
given MAWES design.

The resultant non-dimensional force per kite F̃ reads as:

F̃ = C̃ + L̃ + D̃ + C̃T + D̃T . (20)

As the problem is assumed to be rotationally-steady, the
resultant force must be parallel to the secondary tether.
Introducing the scaling variable κ ∈ R, the following holds:

F̃− κ (x̃x̂ + z̃ẑ) = 0. (21)

Further, the stress in the tether must be less than some
tolerable stress σT , non-dimensionalized as σT = σ̃T q∞:

π

4
σ̃T φ̃

2 −
∣∣∣∣∣∣F̃∣∣∣∣∣∣

2
ÆR ≥ 0. (22)

The total non-dimensional torque in the −x̂ direction,
reads as:

Q̃ = N
(
Q̃k + Q̃TD

)
· (−x̂) . (23)

The MAWES produces power by reeling out the tether at
a velocity fU∞x̂ under the total force. Using (4) and (20):

P̃ = T̃ f. (24)

BEM requires a thrust and torque expression from the mo-
mentum perspective, to equate to the determined thrust
and torque expression from the blade-element perspective.

3.2 Momentum Thrust and Torque Expressions

To implicitly solve for induction using BEM, momentum-
perspective expression for thrust and torque are needed.

The momentum-perspective argument is based on the
assumption that there is an annular streamtube, which
contains the MAWES kites at an ”actuator annulus”,
and holds potential flow in equilibrium. The flow at each
annulus is assumed homogeneous. Further, it is assumed
that the kite-and-secondary-tether only perform work on
the flow in the actuator annulus, across which the work is
distributed uniformly. Streamtube cross-sections (see Fig-
ure 3) are considered infinitely-far upstream (∞), shortly
upstream (w+), shortly downstream (w−) and infinitely-
far downstream (e) of the kite actuator annulus (w), such
that stagnation pressure and angular momentum are con-
served between ∞ and w+, as well as w− and e.

The normalized rotor area can be approximated as:

Aw

S
≈
π
(
z̃c+ 1

2ÆRc
)2 − π (z̃c− 1

2ÆRc
)2

S
≈ 2πz̃. (25)

Assuming that there is no axial change in velocity between
w+ and w−, and that the pressure at e has recovered to

∞ w e

U∞

u+
w

vw
ue

uw

v−w

u−w

w−w+

Fig. 3. A sketch of relevant streamtube cross-sections, with
streamtube expansion exaggerated for visibility.

the original free-stream pressure, the pressure difference
across the kite actuator annulus can be found:

p+
w − p−w = 1

2ρU
2
∞4(a− a2). (26)

This pressure difference causes a thrust across the annulus:

T̃ =
T

q∞S
=
Aw

S

(p+
w − p−w)

q∞
= 8π(a− a2)z̃. (27)

It is assumed that there is a linear increase in angular
velocity between w+ (where the angular velocity is zero)
and w−. This corresponds to a tangential velocity v+

w = 0,
vw = a′λU∞, and v−w = 2a′λU∞. Considering streamtube
expansion, and the fact that 0 ≤ a′ ≤ 1, it is assumed
that the tangential velocity infinitely far downstream is
negligible. Then, the following holds:

Q̃ =
ρairuwAw v−w z̃c

q∞Sc
= 8π(1− a)a′λz̃2. (28)

With the thrust and torque expressions from the blade-
element perspective and the momentum perspective, it
remains to state the combined expressions that implicitly
determine the induction.

3.3 Combined Blade-Element Momentum Expressions

The BEM expressions for thrust and torque allow the in-
clusion of induction into the aerodynamic model in various
degrees, allowing the model to easily switch between the
NI, AI, and AA cases.

In the NI case, the axial induction factor is known:

a = 0. (29)

Otherwise, the axial induction factor must implicitly
equate the blade-element thrust (20) to the momentum
thrust (27), without allowing the flow to reverse:

N F̃ · x̂− 8π(a− a2)z̃ = 0, (30)

0 ≤ a ≤ 0.5. (31)

Similarly, in the NI and AI cases, the angular induction
factor is known:

a′ = 0. (32)

Otherwise, the angular induction factor is determined
implicitly by equating the blade-element torque (23) to
the momentum torque (28), while considering the sign of
the angular induction in (6):
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N
(
Q̃k + Q̃TD

)
· (−x̂)− 8π(1− a)a′λz̃2 = 0, (33)

0 ≤ a′ ≤ 1. (34)

Using the model described until this point, we can for-
mulate an optimization problem to estimate the effect of
including induction on MAWES designs.

4. OPTIMAL DESIGN PROBLEM

Defining the optimization variable W ∈ R19 that contains

the variables [R, x̃, z̃, λ, φ̃, f, a, a′, ξ, ζ, κ]T , the question
under consideration is whether the solution to the NI
power optimization problem:

min.
W

− P̃ (35a)

st. (29), and (32) (35b)

(1), (9), (10), (11), (21), and (22) (35c)

0 ≤ f ≤ 1.0, and x̃, z̃, φ̃ > 0, (35d)

is significantly different from the solution to the AI power
optimization problem:

min.
W

− P̃ (36a)

st. (30), (31), and (32) (36b)

(35c), and (35d), (36c)

and the solution to the AA power optimization problem:

min.
W

− P̃ (37a)

st. (30), (31), (33), and (34) (37b)

(35c), and (35d). (37c)

The optimization problem is posed in the symbolic lan-
guage CasADi (Andersson et al., 2012) and solved with the
interior point solver Ipopt (Wächter and Biegler, 2006).

This optimization problem can be considered with values
that describe a reasonable rigid-wing, lift-mode AWES
at 400m altitude(Ruiterkamp and Sieberling, 2014): m̃ =
1.4397, ÆR = 10.0, σ̃T = 2.1196 · 106, and ρ̃T = 822.9572.
Normalization values correspond to a generalized atmo-
spheric model suggested for AWE purposes (Archer, 2014)
and a Dyneema tether (Bosman et al., 2014) with a toler-
able tether stress that is conservatively chosen as one-fifth
of the 10 percent mean breaking load, as AWE tethers are
safety-critical components for whom fatigue is not yet well
understood.

5. RESULTS AND DISCUSSION

The obtained solutions (see Figures 4 and 5) are possibly
only local minima, but appear close to Loyd’s theoretical
limit (Loyd, 1980) with an NI reel-out factor (0.3758 for
N = 2) close to 1/3. The trends described here are also
found when the fixed parameters (m̃, ÆR, σ̃T , and ρ̃T )
correspond to other rigid AWE kites, like those considered
by Vander Lind (2014) and Zanon et al. (2014).

When axial induction is modelled, the axial induction
factor a is within the range where BEM is applicable, and
is not negligibly small. Further, AI and AA cases generate
significantly less power than NI cases. As a comparison,
when a MAWES with two 3m2-kites flies in a freestream of
velocity U∞ = 10m/s and air density ρair = 1.1786kg/m3,

0
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√
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a
n
( z̃ x̃

)
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a
d

]

N

(a)

(b)

(c)

(d)

(e)

NI AI AA

Fig. 4. Results vs. induction and number of kites:
(a) non-dimensional power, (b) axial induction factor,
(c) angular induction factor, (d) tether-length, and
(e) tether-angle.

-20 -10 0 10 20
ŷ [c]

-10

0

10

ẑ
[c

]

-20 -10 0 10
x̂ [c]

-50 0 50
ŷ [c]

-40

-20

0
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40

ẑ
[c

]

-40-20 0 20 40 60
x̂ [c]

(Front-View)

(Front-View)

(Side-View)

(Side-View)

NI: N = 3

AI: N = 3

Fig. 5. Sample of position results: top kite-and-secondary-
tether is analyzed; others are symmetrically repeated.

the AA case predicts 67kW pulling power, and the NI case
predicts 190kW.

Increasing the number of kites in the AI and AA cases
increases the interference between the kites and the flow,
but acts purely as a force multiplier in the NI cases, such
that differences between NI cases and AI and AA cases
increase with the number of kites.

There appears to be very little difference in the results of
the AI and AA cases, suggesting that angular induction
is not necessary in MAWES modelling. This is reasonable
as MAWES maximize their power production when the
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torque on the system is close to zero, for a consistently high
rotational velocity. Indeed, the angular induction factors
found in the AA case are very small, though the lower
bound of (34) remains inactive.

The AoA bound (10) is always saturated at α = 0.209
radians, far from the maximum elliptical wing lift-to-drag
AoA (αL/Dmax

= 0.0339 radians for CD0 = 0.10 and
ÆR = 10). As Loyd’s theoretical limit (Loyd, 1980) for
power proposes maximizing the system C3

L/C
2
D and the

secondary tether drag is non-negligible, the kite lift must
be maximized.

The kite location causes a three-way trade-off in the avail-
able power. First, long tether-lengths decreasing the effect
of induction as each kite is further from the other kites’
trailing vortices. Second, small angles between the sec-
ondary tether and the rotation axis increase the available
power by allowing a greater portion of the resultant force
to contribute to the power generation. Third, short tether-
lengths increase the power by decreasing tether-drag. In
the NI case, there is no induction, and the tether-drag
effect is much stronger than the vector-projection effect.
Consequently, the no-collision constraint (1) is active. In
comparison, the AI and AA cases find moderate secondary
tether lengths, with kites that are further downwind of the
tether-connection point.

A larger kite centrifugal force will allow the MAWES to
support a larger radius of rotation. Consequently, optimal
kites in AI and AA cases are heavier than those in NI cases,
as seen in Figure 6. That is, MAWES designed for NI tend
to have short secondary tethers, and lightweight kites, as
in a hub- and root-less wind turbine. In contrast, MAWES
designed for AI or AA have longer secondary tethers and
heavier kites.
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m̃
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60 12
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0 24
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3.0

m̃

15 30 45

60 75

90

AI: P̃

0.0

Fig. 6. Non-dimensional power vs. mass ratio and aspect
ratio, for NI and AI, N = 3

Whereas the NI results are not consistent with the mod-
elling assumptions, due to the short secondary tethers,
the AI results do appear consistent with the assumptions
and resemble an imagined MAWES. The validity of these
modelling assumptions, particularly the rotational symme-
try of the system due to the neglected gravity and main
tether, is the subject of an ongoing analysis. As Figure 4
(top) resembles comparable plots (Manwell et al., 2009) for
wind turbines, and Zanon et al. (2014) predicts only half
the two-kite induction power loss as found in this analysis,
an asymmetric MAWES study appears to be justified.

6. CONCLUSION

In the power optimization of a MAWES, including axial
induction leads to a significantly different system per-
formance and design-point: a power decrease of approx-
imately 60 percent and designs with heavier kites and
longer secondary tethers. Given the assumptions made in
this study, axial induction is highly relevant to MAWES
optimal design and control, while angular induction is
negligible.
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