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Abstract
The derivation of analytical solutions for the optimal reference currents during Maximum-Torque-per-
Current (MTPC; or Maximum-Torque-per-Ampere (MTPA)), Maximum-Torque-per-Voltage (MTPV)
and Maximum-Torque-per-Flux (MTPF) operation of anisotropic synchronous machines with non-negli-
gible stator resistance and mutual inductance is presented. The analytical solutions allow for a direct
computation of the corresponding reference currents without neglecting stator resistance and/or mutual
inductance (as usually done). Numerical approximations are no longer required. The derived analytical
solutions for MTPC, MTPV and MTPF operation are suitable for any anisotropic synchronous machine;
even for nonlinear reluctance synchronous machines as measurement will illustrate.

Introduction and motivation
Electrical machines consume more than half of the globally generated electricity [1]. Hence, optimal
feedforward torque control of electric drives (machine+inverter) is crucial to minimize losses; in par-
ticular for synchronous machines (SMs) with non-negligible anisotropy such as interior permanent-
magnet (PM) synchronous motors (IPMSMs), reluctance synchronous machines (RSMs), PM-assisted
RSMs (PMA-RSMs) or PM-enhanced RSMs (PME-RSMs) [2, 3]. The optimal feedforward torque control
problem was discussed in numerous publications, see e.g. [4, 5, 6, 7, 8] to name a few. The computation
of the optimal reference currents for the different operation strategies such as MTPC, MTPV or MTPF is
usually done either numerically or analytically imposing simplifying assumptions (e.g. neglecting stator
resistance and/or cross-coupling inductance) on machine model or physical constraints. Numerical solu-
tions, in general, increase the computational load on the real-time system. Analytical solutions are more
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attractive (easy to implement, more accurate and faster to compute). However, to the best knowledge
of the authors, analytical solutions which simultaneously consider stator resistance and mutual induc-
tance for MTPC, MTPV and MTPF of anisotropic SMs are not available yet. In [9, Sec. IV] and [10,
Sec. 2.2.3], it was stated that the derivation of a general analytical solution of the optimal currents for
MTPC, MTPV and MTPF considering stator resistance and mutual inductance seems not possible due
to the mathematical complexity. The main contributions of this paper are: (i) The derivation of analytical
solutions of the optimal reference currents for MTPC, MTPV and MTPF operation explicitly consider-
ing stator resistance and cross-coupling (mutual) inductance. The proposed analytical solutions ensure
(i-a) definite convergence to the optimal reference currents (compared to numerical methods), (i-b) sim-
ple implementation, and (i-c) reduced computational load; (ii) The analytical solutions for the optimal
reference currents are obtained by (ii-a) the use of Lagrangian multipliers and (ii-b) an implicit problem
formulation as quadrics (i.e. all constraints and operation strategies–such as e.g. current circle, voltage
ellipse and torque hyperbola–are reformulated implicitly in the (d,q)-plane as quadric surfaces); (iii)
The impact of neglecting stator resistance and mutual inductance or both on the optimality of all op-
eration strategies is illustrated showing that neglecting these two parameters during optimization yields
deviations between optimal and approximated reference currents; and (iv) Simulation and experimental
results confirm the theoretical outcomes.

Problem formulation
Main goal of optimal feedforward torque control is to obtain the optimal reference currents for a given
reference torque considering the actual operation mode of the electrical drive system and its physical
constraints. To do so, at first, the steady-state model and the operation constraints of the considered
synchronous machines, and the problem formulation are presented. Then, the machine torque and all
operation constraints (such as current or voltage limit) are re-formulated implicitly as quadratic surfaces
(quadrics). These implicit expressions will allow for an analytical computation of the reference currents
for MTPC, MTPV or MTPF operation.

Steady-state model of generic synchronous machines (SMs)

The steady-state model of an anisotropic synchronous machine in the k = (d,q)-reference frame1 (ma-
trix/vector notation) is given by

uk
s = Rsiks+ωkJLk

s iks+ωkJψk
pm, (1)

where J :=
[

0 −1
1 0

]
and a (locally) constant inductance matrix Lk

s ∈R2×2 (e.g. obtained by linearizing the
nonlinear flux linkage at the actual operating point) is assumed such that the (local approximation of the)
flux linkage may be expressed by

ψk
s(i

k
s) = Lk

s iks+ψk
pm where ψk

pm =
(

ψd
pm

ψq
pm

)
=

{
(ψpm,0)>, for PMSM and PME-RSM [3],
(0,−ψpm)

>, for PMA-RSM [3, 2], and
(0,0)>, for RSM [3, 13].

(2)

The machine torque is then given by

mm(iks)
(2)
= 3

2 np
[
(iks)
>JLk

s iks +(iks)
>Jψk

pm
]
= 3

2 np

[
ψd

pmiqs −ψq
pmids +

(
Ld

s −Lq
s
)
ids iqs +Lm

(
(iqs )

2−(ids )
2)]. (3)

In (1), (2) and (3), Rs (in Ω) is the stator resistance, uk
s := (ud

s ,u
q
s )
> (in V), iks := (ids , iqs )

> (in A) and
ψk

s := (ψd
s , ψq

s )
> (in Wb) are stator voltage, current and flux linkage vectors, respectively. Note that

ωk = np ωm (in rad/s) is the electric angular frequency, whereas ωm is the mechanical angular frequency

of the machine. np is the pole pair number. The inductance matrix Lk
s = (Lk

s)
> :=

[
Ld

s , Lm
Lm, Lq

s

]
> 0 depends

1I.e., the synchronously rotating k = (d,q)-coordinate system with orthogonal axes d and q after Clarke and Park transfor-
mation (see [11] or [12, Chapt. 14] with identical notation as in this paper).
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mm,ref

ûmax ı̂max ωk
ids,ref

iqs,ref

Fig. 1: Optimal reference currents iks = (ids,ref, iqs,ref)
> for given reference torque mm,ref and actual angular

velocity ωk = npωm, and current ı̂max and voltage ûmax constraints.

on stator inductances Lq
s > 0, Ld

s > 0 (both in H) and cross-coupling (mutual) inductance2 Lm ∈ R (in
H) satisfying Ld

s Lq
s −L2

m > 0. The permanent-magnet flux linkage is denoted by ψk
pm = (ψd

pm, ψq
pm)
>.

Remark 1 (Affine flux linkage) Eq. (2) implies a constant inductance matrix; this is in line with most
of the recent publications which deal also with constant inductances only (see e.g. [6, 7]). This simplifi-
cation is not true in general [13]. The results of this paper can be considered as a generalization of the
results for IPMSM in [5] to any anisotropic SM (e.g. PMA/PME-RSMs and RSMs) with non-negligible
stator resistance Rs and mutual inductance Lm. Moreover, measurement results presented later will
illustrate applicability to nonlinear machines (with current-dependent differential inductances) as well.

Operation constraints and problem formulation

Stator current and voltage vectors must not exceed their respective maximal magnitudes ı̂max > 0 (in A)
and ûmax > 0 (in V; both are amplitudes not RMS values here), i.e.

‖iks‖2 = (ids )
2 +(iqs )

2 ≤ ı̂2max and ‖uk
s‖2 = (ud

s )
2 +(uq

s )
2 ≤ û2

max. (4)

For a given reference torque mm,ref (in Nm), the general objective is to find optimal and analytical so-
lutions of the reference currents for the MTPC, MTPV and MTPF operation. Hence, the following
optimization problem

max
iks
− f (iks) s.t. ‖uk

s‖ ≤ ûmax, ‖iks‖ ≤ ı̂max, |mm(iks)| ≤ |mm,ref| and sign(mm,ref) = sign(mm(iks)), (5)

with three inequality constraints and one equality constraint must be solved online, where obviously
the sign of reference and machine torque should coincide. The function f (iks) depends on the operation
strategy (e.g. f (iks) = ‖iks‖2 for MTPC). The most favorable outcome is an analytical solution of the
optimal reference current vector

iks,ref(mm,ref, ûmax, ı̂max,ωk) =

(
ids,ref(mm,ref, ûmax, ı̂max,ωk)

iqs,ref(mm,ref, ûmax, ı̂max,ωk)

)
:= argmaxiks

− f (iks), (6)

which is then handed over to any underlying current controller (see also Fig. 1).

Remark 2 (Feasible reference torques and non-convexity of the machine torque) Due to the voltage
limit or due to the current limit, not all reference torques mm,ref are feasible during all operation modes.
Therefore, the additional inequality constraint in (5) is considered. If the requested reference torque
is feasible, the inequality constraint becomes the equality constraint |mm(iks)| = |mm,ref| (or simply,
mm(iks) = mm,ref). Moreover, note that the machine torque mm(iks) ∝ (iks)

>JLk
s iks is not convex, since

JLk
s =

[
−Lm −Lq

s
Ld

s Lm

]
is non-symmetric and indefinite with eigenvalues ±

√
L2

m−Ld
s Lq

s . Hence, maximizing
the machine torque is not in general a viable approach.

2Note that the mutual inductance Lm changes its sign with the negative product of the currents, i.e. sign(Lm) = −sign(ids ·
iqs ) [14, Fig. 2].



W
orking

Copy
Implicit reformulation of machine torque and constraints (as quadrics)
The basis for the upcoming derivations is the steady-state model in (1). The non-intuitive trick to derive
analytical solutions for the reference currents for MTPC, MTPV or MTPF operation is the re-formulation
of the general optimization problem (5) implicitly by quadrics (or quadric surfaces) which allows to
invoke the Lagrangian formalism (without the need of case studies). In the next sub-sections, the implicit
forms of torque hyperbola, voltage ellipse (elliptical area), current circle (circular area) and flux norm
are presented. Stator resistance Rs 6= 0 and mutual inductance Lm 6= 0 will not be neglected to present
the most general result.

Reference torque hyperbola (constant reference torque trajectory)

To derive the quadric of the torque hyperbola, define the following matrix, vector and scalar

T := 3
4 np
(
JLk

s +Lk
sJ>
)
= 3

2 np

[
−Lm

Ld
s −Lq

s
2

Ld
s −Lq

s
2 Lm

]
= T>, t := 3

4 npJψk
pm and τ(mm,ref) :=−mm,ref, (7)

respectively. Moreover, observe that (iks)
>JLk

s iks = (iks)
>Lk

sJ>iks , therefore 3
4 np(iks)

>(JLk
s + Lk

sJ>)iks =

(iks)
>T iks . Then, by combining (7) and the relations above with (3), the machine torque can be expressed

by mm(iks) = (iks)
>T iks + 2t>iks ; which, for a given reference torque mm,ref and (7), yields the machine

reference torque hyperbola (a quadric) as follows

T(mm,ref) :=
{

iks ∈ R2 ∣∣ (iks)>T iks +2t>iks + τ(mm,ref) = 0
}
. (8)

An exemplary torque hyperbola is plotted in Fig. 2 (see black line in Fig. 2).

Voltage elliptical area (reformulation of the voltage constraint in (4))

Inserting (1) into (4) and squaring the result yields an expression of the voltage limit in (4) which can be
stated implicitly as quadric surface V(ωk, ûmax) :=

{
iks ∈R2 ∣∣ (iks)>V (ωk) iks +2v(ωk)

>iks +ν(ωk, ûmax)≤
0
}

, where respective matrix, vector and scalar are given by [16]

V (ωk) := R2
s I2+Rsωk

(
JLk

s +Lk
sJ>
)
+ω2

k(L
k
s)

2 =V (ωk)
>

=

[
R2

s −2ωkRsLm +ω2
k[(L

d
s )

2 +L2
m], ωkRs(Ld

s −Lq
s )+ω2

kLm(Ld
s +Lq

s )

ωkRs(Ld
s −Lq

s )+ω2
kLm(Ld

s +Lq
s ), R2

s +2ωkRsLm +ω2
k[(L

q
s )

2 +L2
m]

]
,

v(ωk)
> := ωk (ψk

pm)
>(ωkLk

s +RsJ>
)

and ν(ωk, ûmax) := ω2
k (ψ

k
pm)
>J>Jψk

pm− û2
max.

 (9)

V(ωk, ûmax) describes the voltage elliptical area. Its boundary/the voltage ellipse (see green line in
Fig. 2), is defined by

∂V(ωk, ûmax) :=
{

iks ∈ R2 ∣∣ (iks)>V (ωk) iks +2v(ωk)
>iks +ν(ωk, ûmax) = 0

}
. (10)

Since V (ωk), v(ωk) and ν(ωk, ûmax) explicitly depend on the electric angular velocity ωk, the voltage
ellipse depends on ωk, and, hence, it moves in the current locus for varying angular velocities (see
Fig. 2).

Current circular area (reformulation of the current constraint in (4))

The current constraint in (4) can also be expressed implicitly as quadric by I(ı̂max) :=
{

iks ∈R2 ∣∣ (iks)>I2iks−
ı̂2max ≤ 0

}
, which describes the admissible maximum current circular area: The magnitude of the sta-

tor current vector must not exceed the current limit ı̂max. The maximum current circle (see orange line

in Fig. 2), i.e. the boundary of I(ı̂max), is defined by ∂I(ı̂max) :=
{

iks ∈ R2 ∣∣ (iks)>I2iks − ı̂2max = 0
}
.

Norm of the flux linkage

To operate the machine in MTPF mode, the squared norm of the flux linkage is minimized. The flux norm

can also be expressed as quadric as follows ‖ψk
s‖2 (2)

= (Lk
s iks +ψk

pm)
>(Lk

s iks +ψk
pm) =: (iks)

>Fiks +2 f>iks +φ,
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where corresponding matrix, vector and scalar are defined by [16]

F := (Lk
s)

2 =

[
(Ld

s )
2 +L2

m Lm(Ld
s +Lq

s )

Lm(Ld
s +Lq

s ) (Lq
s )

2 +L2
m

]
= F>, f := Lk

sψk
pm, and φ := ψ2

pm. (11)

Operation strategies
In this section, MTPC, MTPV and MTPF operation are discussed and the analytical solutions for the
respective reference currents are presented. A detailed derivation of the presented results is presented
in [16]. A description of the overall operation management also covering field weakening (FW) and
maximum current (MC) control can be found in [15].

Maximum-Torque-per-Current (MTPC) hyperbola (considering Lm)

For low speeds, the voltage constraint in (4) is not critical. The minimization of copper losses dominates
the operation of the machine and the MTPC strategy must used. The MTPC optimization problem is
formulated as follows

max
iks∈S
−‖iks‖2 s.t. mm(iks) = (iks)

>T iks +2t>(iks)
!
= mm,ref(

(7)
= −τ(mm,ref)) (12)

with the admissible current set S := V(ωk, ûmax)∩ I(ı̂max) which is the intersection of voltage elliptical
area V(ωk, ûmax) and current circular area I(ı̂max). Its solution, the MTPC hyperbola (see blue line in
Fig. 2), can also be expressed implicitly as quadric [16]

MTPC :=
{

iks ∈ R2 ∣∣ (iks)>MC iks +2m>Ciks = 0
}
. (13)

The derivation of the implicit form (13) and the explicit expressions for MC and mC are presented in
Appendix B of [16]. Note that the derivation in Appendix B of [16] can also be applied to obtain the
implicit forms of the two other operation strategies such as MTPV or MTPF. Due to space limitations, a
detailed derivation cannot be presented in this paper.

Maximum-Torque-per-Voltage (MTPV) hyperbola (considering Rs and Lm)

For high speeds, the voltage constraint in (4) is critical and dominates the operation of the machine. Now,
the operation strategy is MTPV. The corresponding MPTV optimization problem is as follows

max
iks∈S
−‖uk

s(i
k
s)‖2 s.t. mm(iks) = (iks)

>T iks +2t>(iks)
!
= mm,ref (14)

with admissible set S = V(ωk, ûmax)∩ I(ı̂max). Its solution, the MTPV hyperbola, depends on ωk and is
implicitly given by the quadric [16]

MTPV(ωk) :=
{

iks ∈ R2 ∣∣ (iks)>MV(ωk) iks +2mV(ωk)
>iks +µV(ωk) = 0

}
(15)

Details of the derivation of (15) and the explicit expressions for MV, mV and µV can again be found
in [16]. Note that, due to its dependency on ωk, the MTPV hyperbola is moving in the (ids , i

q
s )-plane for

varying speeds (see light blue line in Fig. 2).

Maximum-Torque-per-Flux (MTPF) hyperbola (considering Lm)

An alternative to the MTPV strategy is the MTPF strategy. Nevertheless, it should be noted that MTPV
should be used, since it yields larger reference currents than those obtained from MTPV (see Remark
IV.6 in [16]). The MTPF optimization problem is formulated as follows

max
iks∈S
−‖ψk

s(i
k
s)‖2 s.t. mm(iks) = (iks)

>T iks +2t>(iks)
!
= mm,ref (16)
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iq s
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A

(a) MPTC, i.e., MTPC∩T(mm,ref), for ωk = ωk,nom.
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T(mm,ref)

MTPCMTPF

∂I(̂ımax)

MTPV(ωk)

∂V(ωk, ûmax)

ids / A

iq s
/

A

(b) MPTV, i.e., MTPV(ωk)∩∂V(ωk, ûmax), for ωk = 3ωk,nom.

Fig. 2: Steady-state simulation results and illustration of impact of neglecting stator resistance (dashed
line: Rs = 0), mutual inductance (dash-dotted: Lm = 0) or both (dotted: Rs = Lm = 0)) on e.g. MTPC
and MTPV operation: The plots show voltage ellipse ∂V(ωk, ûmax), ∂V(ωk, ûmax;Rs =
0), ∂V(ωk, ûmax;Lm = 0), ∂V(ωk, ûmax;Rs = Lm = 0), max. current circle ∂I(ı̂max),
MTPC hyperbola MTPC, MTPC(Lm = 0), reference torque hyperbola T(mm,ref),

T(mm,ref;Lm = 0), MTPV hyperbola MTPV(ωk), MTPV(ωk;Lm = 0), MTPF hyperbola
MTPF, MTPF(Lm = 0) and optimal operation point .

with admissible set S := V(ωk, ûmax)∩ I(ı̂max). Its solution, the MTPF hyperbola (see gray line in
Fig. 2) is implicitly given by the quadric [16]

MTPF :=
{

iks ∈ R2 ∣∣ (iks)>MF iks +2m>F iks +µF = 0
}
, (17)

which does not depend on the angular velocity ωk (in contrast to the MTPV hyperbola (15)). The explicit
expressions for MF, mF and µF are derived in [16].

Analytical solutions of the optimal reference current vectors for MTPC, MTPV and MTPF

The analytical expressions for the optimal reference current vectors are finally given by

iks,ref =


ik,MTPC
s,ref (λ?) :=−

[
λ? T − I2

]−1λ? t, for MTPC

ik,MTPV
s,ref (λ?) :=−

[
λ?V (ωk)− sign(mm,ref)T

]−1(λ?v(ωk)− sign(mm,ref)t
)
, for MTPV

ik,MTPF
s,ref (λ?) :=−2

[MF
µF
− V (ωk)

ν(ωk,ûmax)
−λ?J

]−1(λ? mF
µF
− v(ωk)

ν(ωk,ûmax)

)
, for MTPF

(18)

where I2 :=
[

1 0
0 1

]
, J :=

[
0 −1
1 0

]
, and T , t, τ, V (ωk), v(ωk), ν(ωk, ûmax), MF and mF are as in (7), (9)

and (17), respectively. Moreover, λ? is the optimal Lagrangian multiplier which represents one of the
(real) roots of a fourth-order polynomial (for details see Appendices A–D in [16]). Note that these four
roots can also be computed analytically (see Appendix A.3 in [16]).

Implementation: Simulation and measurement results
In this section, simulation and measurement results are presented to illustrate the effectiveness of the pro-
posed analytical reference current computation for MPTC, MTPV or MPTF operation. For all presented
experiments, exact parameter knowledge is assumed3.

Simulation results: Steady-state simulation and illustration of the impact of neglecting Rs and Lm:
In Fig. 2, for a small 400 W IPMSM with the parameters

Rs = 20Ω, Ld
s = 60mH, Lq

s = 80mH,Lm = 0.5mH,ψpm = 0.23Wb and np = 3, (19)

3As for any parameter-dependent or model-based approach, the impact of parameter uncertainties is usually not negligible.
But, due to space limitations, parameter uncertainties are not considered in this paper.
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(a) MTPC (ωk = ωk,nom). (b) MTPV (ωk,nom < ωk). (c) MTPF (ωk,nom < ωk).

Fig. 3: Current locus (top; signals shown: current circle ∂I(ı̂max), reference torque
hyperbola(s) T(mm,ref) (& T(mm,min)), voltage ellipse(s) ∂V(ωk,ref, ûmax) (&

∂V(ωk,min, ûmax)), MTPC hyperbola MTPC, MTPV hyperbola(s) MTPV(ωk,ref) (&
MTPV(ωk,min)), MTPF hyperbola MTPF, and optimal reference & actual currents ) and

corresponding time series plots (bottom; signals shown: reference ids,ref, iqs,ref & actual currents ids , iqs ,
reference ωk,ref & actual electrical angular velocity ωk and reference torque mm,ref & actual torque mm,
friction torque mf and load torque ml, resp.) for (a) MTPC, (b) MTPV and (c) MTPF.

two different optimal feedforward torque control strategies are illustrated for the positive reference torque
mm,ref = 3.35Nm, the voltage limit ûmax = 600V and the current limit ı̂max = 5A. The illustrated optimal
operation strategies are MTPC in Fig. 2a and MTPV in Fig. 2b. The respective optimal operation points
with their (optimal) current references iks,ref = (ids,ref, iqs,ref)

> are indicated by and correspond to the
intersection of (a) MTPC∩T(mm,ref) for MTPC in Fig. 2a and (b) MTPV∩ ∂V(ωk, ûmax) for MTPV
in Fig. 2b. For increasing electric angular velocities ωk ∈ {1, 3}ωk,nom (where ωk,nom = npωm,nom =
641.36rads−1 is the nominal electric angular velocity), the MTPV hyperbola is approaching the MTPF
hyperbola and the voltage ellipse is shrinking; whereas the current circle, MTPC hyperbola, torque
hyperbola and MTPF hyperbola are independent of the angular velocity and, hence, do not change in the
two plots. Moreover, Fig. 2a&b highlight the deteriorating effects on the shape of MTPC, MTPV, MTPF,
torque hyperbola and voltage ellipse when (i) stator resistance (i.e. Rs = 0: dashed lines), (ii) mutual
inductance (i.e. Lm = 0: dash-dotted lines) or (iii) both (i.e. Rs = Lm = 0: dotted lines) are neglected.
Clearly, neglecting stator resistance, mutual inductance or both leads to different (and wrong) intersection
points and, hence, non-optimal solutions with reduced efficiency. Concluding, both parameters should
not be neglected (at least for machines with low-power rating).

Simulation results: Dynamic simulation of current-controlled IPMSM drive: In Fig. 3 (top: cur-
rent locus; bottom: time series plots), the dynamic simulation results are shown for MTPC (see Fig. 3a),
MTPV (see Fig. 3b) and MPTF (see Fig. 3c) operation of the IPMSM with the parameters as in (19). The
implemented dynamical model consists of a PI speed controller and current PI controllers with decou-
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pling feedforward control [13], a dynamical model of the IPMSM, and a switching model [12, Chap. 14]
of a two-level voltage source inverter (VSI) with space vector modulation (SVM). The switching fre-
quency is fsw = 10kHz. Control objective is tracking of different reference angular velocities ωk,ref (if
feasible; see lines in the third subplots of Fig. 3)). The PI speed controller outputs the reference
torque mm,ref (see line in the fourth subplots of Fig. 3) which is fed into the proposed optimal feed-
forward control system (see Fig. 1). The optimal and analytically computed (with Eq. (18)) reference
currents ids,ref and iqs,ref (see & lines in the second subplots and in the first subplots of Fig. 3)
are then handed over to the current control system. The closed-loop system is subject to a load torque ml
and viscous friction mf = νωm (with viscous friction coefficient ν (in Nmsrad−1); see & lines
in the fourth subplots of Fig. 3, resp.). The closed-loop system responds with the actual currents ids & iqs
(see & lines in the second subplots of Fig. 3 and points in the first subplots of Fig. 3), the
actual (feasible) machine torque mm (see line in the fourth subplots of Fig. 3) and the achievable
actual electrical angular speed ωk (see line in the third subplots of Fig. 3).

MTPC (see Fig. 3a): Control objective is set-point tracking of the nominal speed, i.e. ωk,ref = ωk,nom =
641.36rads−1 under a time-varying load profile where the load torque varies between zero and (almost)
nominal torque, i.e. 0≤ ml < mm,nom = 6.24Nm. The friction imposes an additional disturbance torque
which leads to an overall maximal load of the nominal machine torque. For nominal speed operation,
the voltage constraint is not restrictive and MTPC operation is feasible. Hence, all operation points (ref-
erence currents) are on the MTPC hyperbola. The current controllers achieve almost perfect tracking
of these optimal reference currents. Due to switching in VSI, the actual currents are slightly deteri-
orated/noisy4. All reference torques are feasible and can be applied by the machine. The reference
torques 0 ≤ mm,ref ≤ mm,nom, requested by the speed controller, vary between zero and nominal torque.
The desired speed set-point is tracked throughout this experiment.

MTPV (see Fig. 3b): Control objective is speed set-point tracking of ωk,ref = 2773.96rads−1� ωk,nom
under a time-varying load profile with 0 ≤ ml < 2.3Nm. Due to the high speed, the back-emf volt-
age limits the feasible machine torque. The friction torque at the beginning of the simulation can be
compensated for and set-point tracking is achieved. However, when a non-zero additional load torque is
applied, the actual machine torque is not sufficient anymore to counteract load and friction. The machine
decelerates and the voltage constraints are slightly relaxed (see wider voltage ellipse in the current
locus) and higher torques can be applied again which stop deceleration but still do not ensure set-point
tracking. The reference torque mm,ref = mm,nom requested by the speed controller is simply not feasible
in MTPV operation. Only at the end of the simulation when the load torque reduces to zero, set-point
tracking is feasible again.

MTPF (see Fig. 3c): Control objective is speed set-point tracking of ωk,ref = 3061.20rads−1� ωk,nom
under a time-varying load profile with 0 ≤ ml < 2.1Nm. Similar to MTPV operation, in view of the
high speed, the back-emf voltage constraints the machine operation. The feasible torques are reduced to
values below 3.1Nm. Again, the friction torque at the beginning of the simulation can be compensated
for and set-point tracking is possible. But, when the load torque increases, the produced machine torque
is not sufficient. The machine decelerates until the feasible machine torque can counteract load and
friction (see wider voltage ellipse in the current locus); but speed set-point tracking is not feasible
under this overall load. Not before the load torque is reducing to zero again, the reference torque mm,ref =
mm,nom requested by the speed controller cannot be produced in the machine during MTPF operation.
Similarly to the MTPV experiment, at the end of the simulation, set-point tracking is again ensured,
since only friction (but no additional load torque) has to be compensated for. Finally, note that, during
MTPF operation, reference currents must be tracked with higher amplitude than during MTPV operation.
Concluding, MTPF operation is less efficient than MPTC operation and, hence, MPTV should be the
favored operation strategy for high speeds.

Measurement results: The presented theory is also validated by real-time implementation of the pro-
posed analytical MTPC strategy to compute the optimal MTPC reference currents iks,ref = (ids,ref, iqs,ref)

>

4Increasing the switching frequency would also increase the tracking accuracy of the current control system.
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as in (18) for a highly nonlinear custom-built 9.6kW RSM (Courtesy of Prof. Maarten Kamper, Stellen-
bosch University, ZA) with the parameters

Rs = 0.4Ω, ωk,nom = 157.07rads−1, mm,nom = 61Nm, ı̂max = 29.7A, and ûmax = 600V, (20)

and the nonlinear (current-dependent) flux linkages ψd
s and ψq

s and differential inductances Ld
s , Lq

s and Lm
as shown in Fig. 4a,b and Fig. 4c,d&e, respectively. The differential inductances are obtained by numer-
ical differentiation of the flux maps with respect to the currents. The overall laboratory setup comprises
a dSPACE real-time system, two 22 kW SEW inverters in back-to-back configuration sharing a common
DC-link, a HOST-PC running MATLAB/Simulink for rapid-prototyping & data acquisition, the custom-
built 9.6 kW RSM and a 14.5 kW SEW PMSM to regulate the mechanical speed. The experiments were
conducted for MTPC operation in motor mode (i.e. ωmmm > 0) at constant speed ωk≈ωk,nom. The refer-
ence torque mm,ref was increased step-wise by increments of 1Nm from 0 to 61Nm (nominal torque) and
held constant at each step for two seconds. The actual values of the nonlinear flux linkages and induc-
tances were used by the feedforward torque controller at each sampling instant to express the nonlinear
RSM dynamics in the form (1) with affine flux linkage (2) by online linearization. The measurement
results of analytical and numerical MTPC method were compared. The obtained reference currents of
both, the numerical and the analytical torque feedforward controller, are depicted in Fig. 4. Results in
Cartesian coordinates and polar coordinates are shown in Fig. 4f and Fig. 4g, respectively. Both meth-
ods give almost identical reference currents. The numerical solution yields an unexpected dip around
‖iks‖= 8A due to a deteriorated interpolation/accuracy of the numerical solver.

Conclusion
This paper presented analytical expressions for the optimal reference currents during the operation strate-
gies Maximum-Torque-per-Current (MTPC) (which, in literature, is often called Maximum-Torque-per-
Ampere (MTPA)), Maximum-Torque-per-Voltage (MPTV) and Maximum-Torque-per-Flux (MTPF), re-
spectively. To the best knowledge of the authors, analytical solutions for the optimal MTPC, MTPV or
MTPF current references in particular for anisotropic synchronous machines with non-negligible stator
resistance and mutual (cross-coupling) inductance were not available this far.
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Fig. 4: Nonlinear flux linkages (a), (b) and inductances (c), (d), (e) of the custom-built 9.6 kW RSM
(inductances shown in the first quadrant, i.e. ids ≥ 0 and iqs ≥ 0) and measurement results (f) & (g)
at 150rads−1: Comparison of the optimal reference currents iks,ref = (ids,ref, i

q
s,ref)
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