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Abstract—Analytical solutions for the optimal current refer-
ences during maximum torque per current (MTPC; or maximum
torque per Ampere (MTPA)), maximum torque per voltage
(MTPV) and maximum torque per flux (MTPF) operation of
anisotropic synchronous machines with non-negligible stator
resistance and mutual inductance are presented. The analytical
solutions allow for an (almost) instantaneous computation of
the corresponding reference currents without neglecting stator
resistance and/or mutual inductance (as usually done). Numerical
methods (approximating these solutions only) are no longer
required. The derived analytical solutions for MTPC, MTPV and
MTPF operation are suitable for any anisotropic synchronous
machine; even for nonlinear reluctance synchronous machines,
as the presented measurement results illustrate.

NOTATION

N,R,C: natural, real and complex numbers. sign(x) :={
1 , x > 0

0 , x = 0

−1 , x < 0
: sign function. x := (x1, . . . , xn)> ∈ Rn: column

vector, n ∈ N where “>” and “:=” mean “transposed”
(interchanging rows and columns of a matrix or vector) and “is
defined as”, resp., 0n ∈ Rn: zero vector. a>b := a1b1 + · · ·+
anbn: scalar product of the vectors a := (a1, . . . , an)> and

b := (b1, . . . , bn)>. ‖x‖ :=
√
x>x =

√
x21 + · · ·+ x2n: Eu-

clidean norm of x. A ∈ Rn×n: (square) matrix with n rows
and columns. A−1: inverse of A (if exists). In ∈ Rn×n :=
diag(1, . . . , 1): identity matrix.

I. INTRODUCTION AND MOTIVATION

Electrical machines consume more than half of the globally
generated electricity [1]. Hence, advances in research on
the optimal feedforward torque control problem of electric
drives (machine+inverter) have been made; in particular for
synchronous machines (SMs) with non-negligible anisotropy
such as interior permanent-magnet (PM) synchronous motors
(IPMSMs), reluctance synchronous machines (RSMs), PM-
assisted RSMs (PMA-RSMs) or PM-enhanced RSMs (PME-
RSMs) [2], [3]. The optimal feedforward torque control prob-
lem has been investigated in numerous publications, see
e.g. [4], [5], [6], [7], [8] to name a few. The online com-
putation of the optimal reference currents for the different

*All authors contributed equally to the paper. Corresponding author is
C.M. Hackl (christoph.hackl@tum.de).

operation strategies such as MTPC, MTPV or MTPF is
usually done numerically or analytically but with simplifying
assumptions (e.g. neglecting stator resistance and/or cross-
coupling inductance) imposed on the machine model or the
physical constraints (e.g. voltage ellipse). Numerical solutions,
in general, increase the computational load on the real-time
system. Analytical solutions are more attractive, since they
are easier to implement, more accurate and faster to compute.
However, to the best knowledge of the authors, analytical
solutions including stator resistance and mutual inductance
for MTPC, MTPV and MTPF of anisotropic SMs are not
available. For example, in [9, Sec. IV] and [10, Sec. 2.2.3],
it was stated that acquiring a general analytical solution of
the optimal currents for MTPV and MTPF while consider-
ing stator resistance and magnetic cross-coupling seems not
possible due to the high degree of complexity. A preliminary
result on MTPC with analytical solution for the reference
currents, which also considers the cross-coupling inductance,
was recently published in [11]. The main contributions of the
present paper are: (i) The derivation of analytical solutions of
the optimal reference currents for MTPC, MTPV and MTPF
operation incorporating stator resistance and cross-coupling
(mutual) inductance. The proposed analytical solutions offer
(i-a) guaranteed convergence to the optimal reference currents
(compared to numerical methods), (i-b) easy/straight-forward
implementation, and (i-c) low computational burden allowing
for an implementation even on modest (hence cheap) processor
boards; (ii) The analytical solutions for the optimal reference
currents are obtained by (ii-a) the use of Lagrangian multi-
pliers and (ii-b) an implicit problem formulation as quadrics
(i.e. all trajectories of constraints and operation strategies in
the (d, q)-plane–such as e.g. current circle, voltage ellipse
and torque hyperbola–are reformulated implicitly as quadric
surfaces); and (iii) the negative effects of neglecting stator
resistance and mutual inductance or both on the optimality
of all operation strategies are illustrated, which show that
neglecting these two parameters during optimization will lead
to significant deviations between optimal and approximated
reference currents and, therefore, to decreased efficiency.
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II. PROBLEM FORMULATION AND MATHEMATICAL

PRELIMINARIES

First, the steady-state model and the operation constraints
of the considered synchronous machines, and the problem
formulation are presented. Then, the machine torque and all
operation constraints (such as current or voltage limit) are re-
formulated implicitly as quadratic surfaces (quadrics). These
implicit forms will pave the way for the analytical solutions of
the reference currents for MTPC, MTPV or MTPF operation.

A. Steady-state model of generic synchronous machines (SMs)

The steady-state model of anisotropic SMs in the syn-
chronously rotating k = (d, q)-reference frame is given by

uks = Rsi
k
s +ωkJL

k
s i
k
s +ωkJψ

k
pm, (1)

where J :=
[
0 −1
1 0

]
and a (locally) constant inductance matrix

Lks :=
[
L
d
s , Lm

Lm, L
q
s

]
∈ R2×2 (e.g. obtained by linearizing the

nonlinear flux linkage around the actual operating point) was
assumed such that the (local approximation of the) flux linkage
can be expressed by

ψks (iks ) = Lks i
k
s +ψkpm where

ψkpm =
(
ψ
d
pm

ψ
q
pm

)
=

{
(ψpm, 0)

>
, for PMSM and PME-RSM [3],

(0,−ψpm)
>
, for PMA-RSM [3], [2], and

(0, 0)
>
, for RSM [3], [12].


(2)

The machine torque is then given by

mm(iks )
(2)
= 3

2np
[
(iks )>JLks i

k
s + (iks )>Jψkpm

]
= 3

2 np

[
ψdpmi

q
s − ψqpmids +

(
Lds − Lqs

)
ids i

q
s

+Lm

(
(iqs )2 − (ids )2

)]
. (3)

In (1), (2) and (3), Rs (in Ω) is the stator resistance, uks :=
(uds , u

q
s )> (in V), iks := (ids , i

q
s )> (in A) and ψks := (ψds , ψ

q
s )>

(in Wb) are stator voltage, current and flux linkage vectors,
respectively. Note that ωk = np ωm (in rad/s) is the electric
angular frequency, whereas ωm is the mechanical angular
frequency of the machine and np denotes the number of pole
pairs. The inductance matrix Lks =

[
L
d
s , Lm

Lm, L
q
s

]
= (Lks )> > 0

depends on stator inductances Lqs > 0, Lds > 0 (both in
H) and cross-coupling (mutual) inductance Lm ∈ R (in H)
satisfying LdsL

q
s−L2

m > 0. The permanent-magnet flux linkage
is denoted by ψkpm = (ψdpm, ψ

q
pm)>.

Remark II.1. Equation (2) implies a constant inductance
matrix; this is in line with most recent publications which also
deal with constant inductances only (see e.g. [6], [7]). This
simplification will not be true in general [12]. Nevertheless,
in the humble opinion of the authors, the presented results
are of quite some relevance and have not been discussed in
this general framework before: The results of this paper can be
considered as a generalization of the results for IPMSM in [5]
to any anisotropic SM (e.g. PMA/PME-RSMs and RSMs) with
non-negligible stator resistance Rs and mutual inductance Lm.

Moreover, in Section IV, measurement results will illustrate
applicability to a nonlinear RSM.

B. Operation constraints and Problem formulation

Stator current and voltage vectors should never exceed their
respective maximal magnitudes ı̂max > 0 (in A) and ûmax > 0
(in V; both are amplitudes not RMS values here). Hence, the
following must be ensured by the control system for all time

‖iks ‖2 = (ids )2 + (iqs )2 ≤ ı̂2max and

‖uks ‖2 = (uds )2 + (uqs )2 ≤ û2max. (4)

For a given reference torque mm,ref (in N m), the general
objective is to find optimal and analytical solutions for the
reference currents for MTPC, MTPV and MTPF operation.
The following general optimization problem

max
iks

−f(iks ) s.t. ‖uks ‖ ≤ ûmax, ‖iks ‖ ≤ ı̂max,

|mm(iks )| ≤ |mm,ref | and

sign(mm,ref) = sign(mm(iks )), (5)

with three inequality constraints and one equality constraint
must be solved online, where obviously the sign of reference
and machine torque should coincide. The function f(iks )
depends on the operation strategy (e.g. f(iks ) = ‖iks ‖2 for
MTPC; for more details, see Sec. III). The most favorable out-
come is an analytical solution to the optimization problem (5)
for the optimal reference current vector

iks,ref(mm,ref , ûmax, ı̂max, ωk) := arg maxiks
−f(iks ), (6)

which is then handed over to the underlying current control.

C. Implicit formulation of torque & constraints as quadrics

The steady-state model (1) will be the basis for the upcom-
ing derivations. The trick to obtain and derive analytical solu-
tions for the reference currents for MTPC, MTPV or MTPF
operation is the reformulation of the general optimization
problem (5) implicitly by quadrics (or quadric surfaces) which
will allow to invoke the Lagrangian formalism. In the next
subsections, the implicit forms of torque hyperbola, voltage
ellipse (elliptical area), current circle (circular area) and flux
norm are presented. Stator resistance Rs 6= 0 and mutual
inductance Lm 6= 0 will not be neglected to present the most
general result.

1) Torque hyperbola (constant torque trajectory): To derive
the quadric (implicit form) of the torque hyperbola, define

T := 3
4np

(
JLks +LksJ

>) = 3
2np

[
−Lm

Lds−L
q
s

2

Lds−L
q
s

2
Lm

]
= T>,

t := 3
4npJψ

k
pm and τ(mm,ref) := −mm,ref .


(7)

Moreover, note that (iks )>JLks i
k
s = (iks )>LksJ

>iks , hence
3
4np(iks )>(JLks + LksJ

>)iks = (iks )>T iks . Now, by combin-
ing (7) and the relations above with (3), the machine torque
can be written as follows

mm(iks ) = (iks )>T iks + 2t>iks ;
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(a) MTPC, i.e., MTPC ∩ T(mm,ref), for ωk = ωk,nom.
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(b) MTPV, i.e., MTPV(ωk) ∩ ∂V(ωk, ûmax), for ωk = 3ωk,nom.

Fig. 1: Illustration of impact of neglecting stator resistance (dashed line: Rs = 0), mutual inductance (dash-dotted: Lm = 0) or
both (dotted: Rs = Lm = 0)) on the MTPC and MTPV operation strategy: The plots show voltage ellipse ∂V(ωk, ûmax),

∂V(ωk, ûmax;Rs = 0), ∂V(ωk, ûmax;Lm = 0), ∂V(ωk, ûmax;Rs = Lm = 0), max. current circle ∂I(̂ımax), MTPC hy-
perbola MTPC, MTPC(Lm = 0), torque hyperbola T(mm,ref), T(mm,ref ;Lm = 0), MTPV hyperbola MTPV(ωk),

MTPV(ωk;Lm = 0), MTPF hyperbola MTPF, MTPF(Lm = 0) and optimal operation point .

which, for a given constant reference torque mm,ref and (7),
can be expressed implicitly as machine torque hyperbola (a
quadric) as follows

T(mm,ref) :=
{
iks ∈ R2

∣∣ (iks )>T iks +2t>iks +τ(mm,ref) = 0
}
.

(8)
An exemplary torque hyperbola is plotted in Fig. 1 (see black
line in Fig. 1).

2) Voltage elliptical area (reformulation of the voltage
constraint in (4)): Inserting (1) into (4) and squaring the result
yields an expression of the voltage constraint in (4) which can
be written implicitly as quadric surface (for details see [13])

V(ωk, ûmax) :=
{
iks ∈ R2

∣∣
(iks )>V (ωk) iks + 2v(ωk)>iks + ν(ωk, ûmax) ≤ 0

}
,

with the following matrix, vector and scalar

V (ωk) := R2
sI2+Rsωk

(
JLks +LksJ

>)+ω2
k(Lks )2

= ω2
k

[
R2

s
ω2
k

− 2
RsLm
ωk

+ (L
d
s )

2
+ L

2
m,

Rs
ωk

(L
d
s − L

q
s ) + Lm(L

d
s + L

q
s )

Rs
ωk

(L
d
s − L

q
s ) + Lm(L

d
s + L

q
s ),

R2
s

ω2
k

+ 2
RsLm
ωk

+ (L
q
s )

2
+ L

2
m

]
,

v(ωk)> := ωk (ψkpm)>
(
ωkL

k
s +RsJ

>) and
ν(ωk, ûmax) := ω2

k (ψkpm)>J>Jψkpm − û2max.


(9)

V(ωk, ûmax) describes the voltage elliptical area. Its boundary,
the voltage ellipse (green line in Fig. 1), is given by

∂V(ωk, ûmax) :=
{
iks ∈ R2

∣∣
(iks )>V (ωk) iks + 2v(ωk)>iks + ν(ωk, ûmax) = 0

}
. (10)

Since V (ωk) = V (ωk)>, v(ωk) and ν(ωk, ûmax) explicitly
depend on the electric angular velocity ωk, the voltage ellipse

itself depends on ωk, and, hence, will move within the current
loci for varying angular velocities (see Fig. 1).

3) Current circular area (reformulation of the current con-
straint in (4)): The current constraint in (4) can also be
expressed implicitly as quadric as follows

I(̂ımax) :=
{
iks ∈ R2

∣∣ (iks )>I2i
k
s − ı̂2max ≤ 0

}
,

which describes the admissible maximum current circular
area: The magnitude of the stator current vector must not
exceed the current limit ı̂max (permanently). The maximum
current circle (see orange line in Fig. 1), i.e. the boundary
of I(̂ımax), is given by

∂I(̂ımax) :=
{
iks ∈ R2

∣∣ (iks )>I2i
k
s − ı̂2max = 0

}
. (11)

4) Norm of the flux linkage: To operate the machine in
MTPF mode, the squared norm of the flux linkage is min-
imized. The flux norm can also be expressed as quadric as
follows

‖ψkpm‖2
(2)
= (Lks i

k
s +ψkpm)>(Lks i

k
s +ψkpm)

=: (iks )>Fiks + 2fiks + φ, (12)

with the following corresponding matrix, vector and scalar

F := (Lks )2 =
[

(L
d
s )

2
+ L

2
m Lm(L

d
s + L

q
s )

Lm(L
d
s + L

q
s ) (L

q
s )

2
+ L

2
m

]
= F>,

f := Lksψ
k
pm, and φ := (ψkpm)>ψkpm = ‖ψkpm‖2.

 (13)

III. OPERATION STRATEGIES

Now, MTPC, MTPV and MTPF operation are discussed, the
analytical solutions for the respective reference currents are
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presented, and the impact of neglecting stator resistance and
mutual inductance on the efficiency is illustrated (see Fig. 1).

A. Maximum-Torque-per-Current (MTPC) hyperbola (with
Lm)

For low speeds, the voltage constraint in (4) is not critical.
The minimization of (copper) losses dominates the operation
of the machine and the MTPC strategy should be used. The
MTPC optimization problem is formulated as follows

max
iks ∈S
−‖iks ‖2 s.t. mm(iks ) = (iks )>T iks + 2t>(iks )

!
= mm,ref

(14)
with S := V(ωk, ûmax) ∩ I(̂ımax). Its solution, the MTPC
hyperbola (see blue line in Fig. 1), can be expressed as
quadric

MTPC :=
{
iks ∈ R2

∣∣ (iks )>MC i
k
s + 2m>Ci

k
s = 0

}
. (15)

The derivation of the implicit form (15) is presented in
Appendix B of [13]. Note that the presented derivation can
also be applied to obtain the implicit forms of the two other
operation strategies such as MTPV or MTPF (for details
see [13]).

Remark III.1 (MTPC versus MTPA). In most publications,
the MTPC strategy is called Maximum Torque Per Ampere
(MTPA). From a physical point of view, the use of physical
quantities (like torque and current) seems more appropriate
than a mixture of quantity and unit (like torque and Ampere).
Therefore, here, the terminology MTPC will be adopted.

B. Maximum-Torque-per-Voltage (MTPV) hyperbola (with Rs

and Lm)

For high speeds, the voltage constraint in (4) is critical and
dominates the operation of the machine. Now, the operation
strategy is MTPV. The corresponding MPTV optimization
problem is formulated as follows

max
iks ∈S
−‖uks (iks )‖2 s.t. mm(iks ) = (iks )>T iks +2t>(iks )

!
= mm,ref

(16)
with S = V(ωk, ûmax) ∩ I(̂ımax). Its solution, the MTPV
hyperbola, depends on ωk and is implicitly given by the
quadric (for details see [13])

MTPV(ωk) :=
{
iks ∈ R2

∣∣
(iks )>MV(ωk) iks + 2mV(ωk)>iks + µV(ωk) = 0

}
(17)

Due to its dependency on ωk, the MTPV hyperbola is moving
in the (ids , i

q
s )-plane (see light blue lines in Fig. 1).

C. Maximum-Torque-per-Flux (MTPF) hyperbola (with Lm)

An alternative to the MTPV strategy is the MTPF strategy.
Nevertheless, it yields reference currents with larger magnitude
(reduced efficiency) than those obtained from MTPV control.
Due to this, MTPV should be used preferably (see Remark

IV.6 in [13]). The MTPF optimization problem is formulated
as follows

max
iks ∈S
−‖ψks (iks )‖2s.t.mm(iks ) = (iks )>T iks +2t>(iks )

!
= mm,ref

(18)
with S := V(ωk, ûmax) ∩ I(̂ımax). Its solution, the MTPF
hyperbola (see gray line in Fig. 1) is implicitly given by
the quadric (for details see [13])

MTPF :=
{
iks ∈ R2

∣∣ (iks )>MF i
k
s + 2m>Fi

k
s + µF = 0

}
,

(19)
which does not depend on the angular velocity ωk (in contrast
to the MTPV hyperbola (17)), since

MF :=

[
m11

F , m12
F

m12
F , m22

F

]
= M>F

mF := 3
2np

((
2(L

d
s )

2 − Lds L
q
s + 3L

2
m

)ψdpm
4

+ Lm(L
d
s + L

q
s )
ψ
q
pm
2

Lm(L
d
s + L

q
s )
ψdpm
2

+
(
2(L

q
s )

2 − Lds L
q
s + 3L

2
m

)ψqpm
4

)
,

µF := 3
4np

[
Lds (ψdpm)2 + 2Lmψ

d
pmψ

q
pm + Lqs (ψqpm)2

]
,


(20)

and m11
F = 3

2np
[
(
Lds−Lqs

2

(
(Lds )2 + L2

m

)
+ L2

m

(
Lds + Lqs

)]
,

m12
F = 3

2np
[
Lm

2

(
(Lds )2 + (Lqs )2 + 2L2

m

)]
and m22

F = 3
2np

[
−

Lds−Lqs
2

(
(Lqs )2 + L2

m

)
+ L2

m

(
Lds + Lqs

)]
do not depend on the

electric angular velocity ωk, respectively.

D. Analytical solutions of the optimal reference current vec-
tors for MTPC, MTPV and MTPF

Due to space constraints, the derivation is not shown in this
paper. The principle idea is based on the reformulation of the
respective optimization problem as Lagrangian by introducing
a Lagrangian multiplier λ ∈ C to account for the respective
equality constraints. The solution of the Lagrangian depends
on the roots of a fourth-order polynomial in λ (for details
see [13]). The four roots can also be computed analytically
(see [13, Appendix A]). The analytical expressions for the
optimal reference current vectors are finally given as follows:
• Maximum-Torque-per-Current (MTPC): Solving the op-
timization problem in (14) by invoking the Lagrangian mul-
tiplier λ ∈ C to account for the equality constraint yields a
fourth-order polynomial in λ (see Appendix A in [13]) and,
with optimal Lagrangian multiplier λ? (a real root of the
fourth-order polynomial), the optimal reference current vector
can be computed by

ik,MTPC
s,ref (λ?) := −

[
λ? T − I2

]−1
λ? t, (21)

where T and t are as in (7).
• Maximum-Torque-per-Voltage (MTPV): During MTPV
operation, the voltage constraint is the most limiting factor and
the reference torque is not feasible anymore. Therefore, the
maximally feasible torque under the voltage constraint shall
be produced. The general optimization problem (5) becomes

ik,MTPV
s,ref := arg maxiks

sign(mm,ref)

=mm(iks )︷ ︸︸ ︷(
(iks )>T iks + 2t>(iks )

)
s.t. V (ωk) + 2v(ωk)>iks + ν(ωk, ûmax) = 0.
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It solution is given by (see Appendix A in [13])

ik,MTPV
s,ref (λ?) :=

−
[
λ?V (ωk)+sign(mm,ref)T

]−1(
λ?v(ωk)+sign(mm,ref)t

)
,

where V (ωk) and v(ωk), and T and t are as in (9) and (7),
respectively.
• Maximum-Torque-per-Flux (MTPF): During MTPF op-
eration (as simplified alternative to MTPV), the voltage con-
straint is again the most limiting factor and the optimal refer-
ence current vector is obtained by the intersection of MTPF
hyperbola MTPF as in (19) and voltage ellipse ∂V(ωk, ûmax)
as in (17), i.e.

ik,MTPF
s,ref (λ?) :=

−2
[
MF

µF
− V (ωk)

ν(ωk,ûmax)
−λ?J

]−1(
mF

µF
− v(ωk)

ν(ωk,ûmax)

)
,

where λ? is one of the (real) roots of the fourth-order poly-
nomials given in Equation (67) in [13, Appendix D].

Remark III.2 (Optimal reference currents for reluctance
synchronous machines (RSMs)). The analytical solutions for
RSMs can be computed in a similar way as shown above;
however, for RSMs, all quadrics simplify due to the miss-
ing permanent magnet, i.e. ψdpm = ψqpm = 0. The vectors
t = v(ωk) = f = mC = mV(ωk) = mF = 02 and scalars
φ = µV(ωk) = µF = 0 of torque hyperbola (8), voltage
ellipse (10), flux norm (12), MTPC hyperbola (15), MTPV
hyperbola (17) and MTPF hyperbola (19) become zero (see
also (7), (9), and (13)), respectively. Therefore, all quadrics
must be shifted by some (arbitrary) xs 6= 02 by substituting
iks by iks := ī

k
s +xs (for more details see [13, Remark IV.8]).

E. Graphical illustration

In Fig. 1, for a small 400 W IPMSM with the parameters
Rs = 20 Ω, Lds = 6 · 10−2 H, Lqs = 8 · 10−2 H, Lm =
0.5 · 10−3 H,ψkpm = (ψpm, 0)> = (0.23 Wb, 0)> and np =
3, the MTPC and MTPV strategy are illustrated for the
positive reference torque mm,ref = 3.35 N m, the voltage
limit ûmax = 600 V and the current limit ı̂max = 5 A. The
illustrated optimal feedforward torque operation strategies are
MTPC in Fig. 1a and MTPV in Fig. 1b. The respective optimal
operation points, with their (optimal) reference current vectors
iks,ref = (ids,ref , i

q
s,ref)

>, are marked by and correspond
to the intersection of (a) MTPC ∩ T(mm,ref) for MTPC
in Fig. 1a and (b) MTPV ∩ ∂V(ωk, ûmax) for MTPV in
Fig. 1b, respectively. For increasing electric angular velocities
ωk ∈ {1, 3}ωk,nom (where ωk,nom is the nominal electric
angular velocity), the MTPV hyperbola is approaching the
MTPF hyperbola (see also [13, Remark IV.6]) and the voltage
ellipse is shrinking; whereas the current circle, MTPC hyper-
bola, torque hyperbola and MTPF hyperbola are independent
of the angular velocity and, hence, do not change in the
three plots. Moreover, Fig. 1a & b illustrate the impact of
neglecting (i) stator resistance (i.e. Rs = 0: dashed line),
(ii) mutual inductance (i.e. Lm = 0: dash-dotted line) or

(iii) both (i.e. Rs = Lm = 0: dotted line) on the shape of
MTPC, MTPV, MTPF and torque hyperbolas and the voltage
ellipse. It is easy to see that neglecting stator resistance,
mutual inductance or both would lead to different (and wrong)
intersection points and, hence, not optimal operation points
with reduced efficiency. For example, the impact of neglecting
stator resistance, mutual inductance or both on the shape, size
and orientation of the voltage ellipse is obvious. Concluding,
both parameters, Rs and Lm must not be neglected.

IV. IMPLEMENTATION AND MEASUREMENT RESULTS

The theoretical derivations are validated by the following
real-time implementation of the proposed analytical MTPC
strategy with the computation of the MTPC reference cur-
rent vector iks,ref = ik,MTPC

s,ref as in (21) and its appli-
cation to a highly nonlinear custom-built 9.6 kW RSM
(Courtesy of Prof. Maarten Kamper, Stellenbosch University,
ZA) with the parameters Rs = 0.4 Ω, ωk,nom = 2π

60 s ·
1 500 rpm = 157.07 rad

s , mm,nom = 61 N m, ı̂max =
29.7 A, and ûmax = 590 V, and the nonlinear (current-
dependent) differential inductances Lds , Lqs and Lm, as shown
in Fig. 2, computed by numerical differentiation of the flux
maps (not shown; obtained by measurements or FEA) with
respect to the currents. The overall laboratory setup comprises
a dSPACE real-time system, two 22 kW SEW inverters in
back-to-back configuration sharing a common DC-link, a
HOST-PC running MATLAB/Simulink for rapid-prototyping
& data acquisition, the custom-built 9.6 kW RSM and a
14.5 kW SEW PMSM to regulate the mechanical speed.
The experiments were conducted for MTPC operation in
motor mode (constant reference torque) at constant speed
ωk ≈ ωk,nom. The reference torque mm,ref was increased step-
wise by increments of 1 N m from zero to nominal torque
mm,nom and held constant at each step for two seconds.
The nonlinear flux linkages and inductances (as in Fig. 2)
were tracked online (using look-up tables) and fed into to the
feedforward torque controller at each sampling instant. The
measurement results of the analytical MTPC approach were
compared with the numerically calculated reference currents.
To be able to express the nonlinear RSM dynamics in the
form (1) with affine flux linkage (2), the nonlinear flux linkage
of the RSM was linearized online (at each sampling instant).
The computed reference currents of both, the numerical and
the analytical torque feedforward controller, are shown in
Cartesian coordinates and polar coordinates in Fig. 3a and
Fig. 3b, respectively. Both solutions give almost identical ref-
erence currents. The numerical solution shows an unexpected
shape (dip) for lower currents (due to a deteriorated interpola-
tion/accuracy and/or a numerical instability of the numerical
solver) and, for higher currents, gives reference vectors with
larger magnitudes leading to higher copper losses than the
analytical approach. The analytical and numerical solution
(for the roots of the fourth-order polynomial) are obtained
on average with execution times of µa = 7.23 · 10−6 s and
µn = 43.4 · 10−6 s, respectively. Concluding, the analytical
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Fig. 2: Nonlinear inductances of the custom-built 9.6 kW RSM (inductances shown in the first quadrant, i.e. ids ≥ 0 and iqs ≥ 0).

0 2 4 6 8 10 12 14
0

5

10

15

20

25

ids / A

iq s
/

A

mm(i
k
s ) numerical analytical

0

20

40

60

(a) Computed reference currents in Cartesian coordinates.

0 5 10 15 20 25 30
0

20

40

60

‖iks ‖ / A
at
an

2(
id s
,i
q s
)

/
◦

mm(i
k
s ) numerical analytical

0

20

40

60

(b) Computed reference currents in polar coordinates.

Fig. 3: Measurement results for a nonlinear custom-build 9.6 kW RSM at 150 rad
s

: Comparison of the optimal reference currents iks,ref =

(ids,ref , i
q
s,ref)

> for MTPC operation computed by the conventional numerical and the proposed analytical method.

method is about six times faster, and gives a more accurate
solution with higher efficiency than the numerical method.
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